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Abstract

Ecologists have long sought a way to explain how the staggering biodiversity observed in na-
ture is maintained. On the one hand, simple models of interacting competitors cannot produce the
stable persistence of very large ecological communities1–5; on the other hand, neutral models6–9,
in which species do not interact and diversity is maintained by immigration and speciation, yield
unrealistically small fluctuations in population abundance10, and a strong positive correlation be-
tween a species’ abundance and its age11, contrary to empirical evidence. Models allowing for
the robust persistence of large communities of interacting competitors are lacking.

Here we show that very rich communities could persist thanks to the stabilizing role of higher-
order interactions12,13, in which the presence of a species influences the interaction between other
species. The existence of higher-order interactions has been debated in ecology for decades14–16,
but their role in shaping ecological communities is still understudied5. Our results show that
higher-order interactions can have dramatic effects on the dynamics of ecological systems, pro-
ducing models in which coexistence is robust to the perturbation of both population abundances
and parameter values. Introducing higher-order interactions has strong effects on models of closed
ecological communities, as well as simulations of open communities in which new species are
constantly introduced.

Notably, in our framework higher-order interactions are completely defined by pairwise inter-
actions, easing empirical parameterization and validation of our models.

Here we study deterministic models describing communities in which the number of individuals
is large and the system is isolated (e.g., bacterial strain competition in laboratory conditions17); in the
Supplementary Information (S4) we examine the case in which the dynamics are stochastic, which
best describe communities in which the number of individuals is finite. Finally, we allow new species
to be introduced at a given rate, allowing for a comparison with neutral models (Supplementary Infor-
mation S5).

While our results hold for a wide class of systems, to exemplify our findings we consider the
dynamics of a forest in which there is a fixed, large number of trees, so that we can simply track xi(t),
the proportion of trees of species i at time t, with ∑i xi(t) = 1. At each step, a randomly selected
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tree dies, opening a gap in the canopy (i.e., we initially assume identical per capita death rates for all
species). This event ignites competition among seedlings to fill the gap. Suppose that all individuals
produce the same number of seedlings, and that we pick two seedlings at random, with the winner of
the competition filling the gap (Fig. S1). The matrix H encodes the dominance relationships among
the species: Hi j is the probability that the first seedling, belonging to species i, wins against the second
seedling, belonging to species j. Clearly, Hii = 1/2 for all i, and Hi j +H ji = 1 for all i and j. If all
Hi j = 1/2, we recover a neutral model. At the other extreme lies a model in which each pair (Hi j,H ji)
is either (1,0) or (0,1) (i.e., species i always wins or always loses against j), in which case H is
called a “tournament matrix”18. A number of results have been derived for this case19, showing that
coexistence is possible when species form “intransitive cycles” of competitive dominance, such as in
the rock-paper-scissors game20. Here we extend these previous findings19 to the most general case in
which interactions range from neutral to complete dominance.

We can approximate the dynamics of the n species as

dxi(t)
dt

= xi(t)2∑
j

Hi jx j(t)− xi(t), (1)

where −xi(t) models the death process, and xi(t)2Hi jx j(t) is the probability of picking two seedlings
of species i and j, with i winning the competition. The factor 2 arises from the fact that we could pick
i first and j second, or vice versa, with the same outcome.

Simple manipulations (Supplementary Information S1) show that these equations are equivalent
to the system

dxi(t)
dt

= xi(t)∑
j

Pi jx j(t), (2)

which is the celebrated replicator equation21,22 for a zero-sum, symmetric matrix game with two
players and payoffs encoded in the skew-symmetric matrix P = H−Ht . This equation is at the core
of evolutionary game theory, with applications spanning multiple fields23,24.

Thanks to this equivalence, we are able to characterize the dynamics. Unless specified, we as-
sume H to be of full rank, i.e., all of its eigenvalues are nonzero. We show in the Supplementary
Information that violations of this assumption are unbiological, amounting to degenerate cases in
which slightly altering the parameters dramatically changes the outcome. Suppose that we start with
n species and initial conditions xi(0) > 0, and that we let the dynamics unfold. Once the transient
dynamics have elapsed, we find k ≤ n coexisting species, with k being odd. The n− k species that go
extinct do so irrespective of initial conditions, and the k coexisting species cycle neutrally around a
unique equilibrium point x∗ (Fig. 1, Supplementary Information S1).

How large is k when we build the matrix H at random? When drawing Hi j (with i < j) from the
uniform distribution U [0,1] and setting the corresponding H ji = 1−Hi j, we find that the probability
of having k species coexisting when starting with n, p(k|n) = 0 when k is even, and p(k|n) =

(n
k

)
21−n

when k is odd25 (Fig. S2). This matches what found for tournament games18,19,26, in which dominance
is complete: we expect half of the initial species to coexist, irrespective of the choice of n; moreover,
monodominance is extremely rare, and about as rare as the coexistence of all species. Thus, this theory
generates high biodiversity without the need to fine-tune parameters.

This model can generate any species-abundance distribution: for any choice of x∗, we can build
infinitely many matrices H such that Eqs. 1 and 2 have x∗ as an equilibrium (Supplementary Infor-
mation S1). Note that this is true irrespective of the fact that x∗ contains an even or odd number of
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a)

b)

c)

d)

Figure 1: Sampling two seedlings: cycles. Dynamics of a forest where two randomly sampled
seedlings compete to fill the gap in the canopy opened by the death of a tree. Seedlings of species i
have probability Hi j of winning against those of species j (shade of the arrowheads; Hi j +H ji = 1). a)
When starting with n species, n− k species go extinct, and k coexist. Given a matrix H, the identity
of the species coexisting or going extinct is the same irrespective of initial conditions. The k species
that coexist cycle neutrally around a single equilibrium point. b) The same is found when dominance
is complete, such as in the rock-paper-scissors game19. c) For any possible species-abundance dis-
tribution x∗, we can build a matrix H such that the species coexist and x∗ is an equilibrium of Eq. 1
(Supplementary Information S1). This is true even when x∗ contains an even number of species—
though this case is not robust to small changes in parameters (Supplementary Information, Fig. S4).
d) The same holds for any number of species in the system.
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species (Fig. 1)—but the case in which an even number of species coexist is degenerate: the system
has infinitely many neutrally stable equilibria, and a slight change of H would result in the extinction
of at least one species (Supplementary Information, Fig. S4).

In summary, the model in Eq. 1 can lead to arbitrarily many species coexisting even when com-
petitive abilities are drawn at random; moreover, it can generate any possible species-abundance dis-
tribution. While the neutral cycling around equilibrium is problematic (such cycles are not observed
in nature, and would lead to monodominance in a noisy, stochastic world, Supplementary Informa-
tion S4), the main issue with this model is that it is highly unrobust: any deviation from perfectly
identical death rates and fecundities for all species destabilizes dynamics, leading to monodominance
(Supplementary Information, Fig. S4).

Following recent mathematical results27, we explore a possible solution to this problem. So far,
we have taken exactly two seedlings, competing with each other to fill the gap in the canopy. In
nature, we would observe a much richer seedbank, potentially leading to the competition among many
seedlings. We therefore study a model in which we take three seedlings at random, compete the first
with the second, and the winner with the third. The deterministic approximation of this model reads

dxi(t)
dt

= xi(t)

(
∑
j,k
(2Hi jHik +Hi jH jk +HikHk j)x j(t)xk(t)−1

)
, (3)

where Hi jHik is the probability that i beats both j and k, Hi jH jk that j beats k, but ultimately is beaten
by i, and HikHk j that first k beats j, and then i beats k. Surprisingly, this small modification leads to
a major change in the dynamics: though the equilibrium point is unchanged, it is now globally stable
(Fig. 2 and Supplementary Information S1). Increasing the number of seedlings that compete to fill
each gap simply accelerates the dynamics, speeding up convergence to the equilibrium (Fig. S3).

While the model in which we sample two seedlings yields the replicator equation for a two-player,
symmetric matrix game, Eq. 3 is equivalent to the replicator equation for a three-player game (Sup-
plementary Information S1):

dxi(t)
dt

= xi(t)∑
j,k

Pi jkx j(t)xk(t), (4)

where P is a 3-index tensor encoding the payoff of player 1 playing strategy i when player 2 plays j and
player 3 plays k. The payoffs can be calculated from the matrix H: Pi jk = 2Hi jHik−H jiH jk−HkiHk j
(where the first term includes the probability of i winning against both j and k, and the remaining two
terms the probability that either j or k dominate).

This latter formulation makes it clear that the stabilizing effect is due to higher-order interac-
tions5,12: suppose the matrix H is constructed as in a rock-paper-scissors game; then the presence
of the rock-plant can reverse the outcome of the competition between the paper- and the scissors-
plant. In our model, higher-order interactions do not alter equilibrium values, but have a dramatic
stabilizing effect, leading to globally stable fixed points instead of neutral cycles. Including fourth- or
higher-order terms simply accelerates the convergence to equilibrium. As such, as long as there is a
chance of competing more than two seedlings at a time, dynamics will converge. Most importantly,
results are qualitatively robust to the perturbations of the death rates and fecundities of the competitors
(Supplementary Information, Fig. S4).

One formidable challenge of estimating higher-order interactions empirically is that for n species
we have

(n
2

)
= n(n− 1)/2 pairs of interactions, but the number of triplets is much higher (

(n
3

)
=
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Figure 2: Sampling three seedlings: stability. When we sample three seedlings at a time instead of
two, and we compete the first with the second and the winner with the third, the equilibrium point is
unchanged, but is now globally attractive. The four cases correspond to those in Fig. 1.
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n(n− 1)(n− 2)/6)—requiring many experiments. Instead of introducing new coefficients, here we
have chosen the most “natural” and conservative parameterization: higher-order interactions are fully
determined by pairwise interactions, as shown by the fact that we can write all models in terms of
the pairwise relationships encoded in H. This makes the models empirically testable by, for example,
competing bacteria in laboratory conditions17.

We have shown the equivalence of models in which competition happens in a sequence of bouts
(Eq. 3) with models in which interactions are simultaneous and involve more than two species at a time
(Eq. 4). Because of a separation of timescales (the filling of a gap is fast, compared to the lifespan
of trees), the two types of models have the same deterministic form, blurring the traditionally-held
distinction between so-called interaction chains and “proper” higher-order interactions5,28. Our results
may have important implications for a variety of ecological systems; for example, in models in which
reproduction is not instantaneously coupled with consumption, an animal could consume a resource,
but be consumed before reproduction—yielding the same mechanism that stabilizes our competitive
communities when we sample three seedlings at a time. Similarly, the stabilizing role of higher-order
interactions in random replicator equations has been recently proposed29, and our analytical results
shed light on these findings.

Moving from deterministic to stochastic models, we find that the presence of higher-order interac-
tions, which make equilibrium points attractive, dramatically increase30 time to extinction in isolated
systems, allowing for the prolonged coexistence of species (Supplementary Information S4). When
we open the system to the introduction of new species (Supplementary Information S5), we recover
many of the main results of neutral theory, but remove the artifactual relationship between a species
age and its abundance—one of the main drawbacks of neutral models11.

Our results strengthen the theory of coexistence in zero-sum competitive networks in several ways.
First, we have widespread coexistence without having to invoke either of two extreme cases: perfect
ecological equivalence (neutral model) or complete dominance (coexistence through intransitive com-
petition). In nature, the outcome of competition could be mediated by a number of factors (e.g.,
soil chemistry, presence of consumers), so that competitive dominance could range from neutral to
complete. Second, many species coexist even when we draw parameters at random, meaning that
the results are highly robust. Third, in this formulation, the notion of intransitivity, which is central
to coexistence in competitive networks in which dominance is complete19, is no longer necessary
for coexistence (Supplementary Information S3). Fourth, the artifact of neutral cycling is due to the
choice of only two competitors per bout—a choice dictated by mathematical convenience rather than
by empirical evidence. Including more biological realism in the form of multiple competing species
removes the artifact, leading to dynamics that are stable against perturbations of species abundances
and robust against changing model parameters.

Acknowledgements

Thanks to J. Aljadeff, F. Brandl, J.A. Capitán, J-F. Laslier, J.M. Levine, C.A. Marcelo Serván, and E.
Sander for comments and discussions. E. Leigh and four anonymous referees provided constructive
feedback. J.G. supported by the Human Frontier Science Program; S.A. and G.B by NSF DEB-
1148867; M.J. M-S. by US Department of Education grant P200A150101.



Higher-order interactions stabilize competitive dynamics Nature (2017) 548:210-213 Page 7

References

[1] May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

[2] Clark, J. S. et al. High-dimensional coexistence based on individual variation: a synthesis of
evidence. Ecological Monographs 80, 569–608 (2010).

[3] Barabás, G., J. Michalska-Smith, M. & Allesina, S. The effect of intra-and interspecific com-
petition on coexistence in multispecies communities. The American Naturalist 188, E1–E12
(2016).

[4] D’Andrea, R. & Ostling, A. Challenges in linking trait patterns to niche differentiation. Oikos
125, 1369–1385 (2016).

[5] Levine, J., Bascompte, J., Adler, P. & Allesina, S. Beyond pairwise coexistence: biodiversity
maintenance in complex ecological communities. Nature (in press) (2017).

[6] Hubbell, S. P. The unified neutral theory of biodiversity and biogeography, vol. 32 (Princeton
University Press, 2001).

[7] Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species
abundance in ecology. Nature 424, 1035–1037 (2003).

[8] Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends in Ecology &
Evolution 21, 451–457 (2006).

[9] Azaele, S. et al. Statistical mechanics of ecological systems: Neutral theory and beyond. Reviews
of Modern Physics 88, 035003 (2016).

[10] Chisholm, R. A. et al. Temporal variability of forest communities: empirical estimates of popu-
lation change in 4000 tree species. Ecology Letters 17, 855–865 (2014).

[11] Chisholm, R. A. & O’Dwyer, J. P. Species ages in neutral biodiversity models. Theoretical
Population Biology 93, 85–94 (2014).

[12] Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and
how can they be detected? Ecology 75, 1529–1543 (1994).

[13] Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological
communities. Ecology 84, 1083–1100 (2003).

[14] Case, T. J. & Bender, E. A. Testing for higher order interactions. The American Naturalist 118,
920–929 (1981).

[15] Abrams, P. A. Arguments in favor of higher order interactions. The American Naturalist 121,
887–891 (1983).

[16] Kareiva, P. Special feature: Higher Order Interactions as a Foil to Reductionist Ecology. Ecology
75, 1527–1528 (1994).



Higher-order interactions stabilize competitive dynamics Nature (2017) 548:210-213 Page 8

[17] Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in
microbial microcosms. Nature Ecology & Evolution 1, 0109 (2017).

[18] Fisher, D. C. & Ryan, J. Optimal strategies for a generalized “scissors, paper, and stone” game.
American Mathematical Monthly 99, 935–942 (1992).

[19] Allesina, S. & Levine, J. M. A competitive network theory of species diversity. Proceedings of
the National Academy of Sciences USA 108, 5638–5642 (2011).

[20] Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. Local dispersal promotes biodiversity
in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002).

[21] Taylor, P. D. & Jonker, L. B. Evolutionary stable strategies and game dynamics. Mathematical
Biosciences 40, 145–156 (1978).

[22] Hofbauer, J., Schuster, P. & Sigmund, K. A note on evolutionary stable strategies and game
dynamics. Journal of Theoretical Biology 81, 609–612 (1979).

[23] Hofbauer, J. & Sigmund, K. Evolutionary game dynamics. Bulletin of the American Mathemat-
ical Society 40, 479–519 (2003).

[24] Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303, 793–
799 (2004).

[25] Brandl, F. The distribution of optimal strategies in symmetric zero-sum games. arXiv preprint
arXiv:1611.06845 (2016).

[26] Fisher, D. C. & Reeves, R. B. Optimal strategies for random tournament games. Linear Algebra
and its Applications 217, 83–85 (1995).

[27] Laslier, B. & Laslier, J.-F. Reinforcement learning from comparisons: Three alternatives is
enough, two is not. arXiv preprint arXiv:1301.5734 (2013).

[28] Wootton, J. T. Indirect effects and habitat use in an intertidal community: interaction chains and
interaction modifications. The American Naturalist 71–89 (1993).

[29] Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diver-
sity. Nature Communications 7 (2016).

[30] Reichenbach, T., Mobilia, M. & Frey, E. Coexistence versus extinction in the stochastic cyclic
Lotka-Volterra model. Physical Review E 74, 051907 (2006).



Higher-order interactions stabilize competitive dynamics Nature (2017) 548:210-213 Page 9

Methods

To exemplify the role of higher-order interactions in shaping ecological dynamics, we consider a
model of a forest in which whenever a tree dies, a certain number of seedlings compete to fill the gap
in the canopy (Fig. S1). We start by writing the microscopic rate W (m)

i j at which species j loses an
individual (η j→ η j−1), while species i gains an individual (ηi→ ηi +1). The index m specifies that
we consider the case in which m seedlings at a time compete to fill in the gap. When there are many
individuals we can track proportions (xi(t) = ηi(t)/∑ j η j(t)), and setting m = 2, we can write this rate
as:

W (2)
i j = d jx j

fixi

∑l flxl
∑
k

2Hik
fkxk

∑l flxl
(5)

in which fi and di are the fecundity and death rate of trees belonging to species i. Using the notation
F(x) = ∑l flxl , the term fixi/∑l flxl = fixi/F(x) is the proportion of seeds in the seedbank belonging
to species i. Finally, the matrix H encodes the probability of winning for every pair of species, so that
Hik is the probability of seedling of species i beating those of species k, and the factor 2 arises from
the fact that we could sample i first and k second, or vice versa. Then, the term W (2)

i j can be interpreted
as the rate at which a) a tree of species j dies, and b) two seedlings of species i and k are sampled,
with i filling the gap. Because the identity of k does not matter, we sum over all possible choices.

When the number of trees is sufficiently large, we can neglect stochasticity and write:

dxi

dt
= ∑

j

(
W (2)

i j −W (2)
ji

)
= xi

(
D(x)
F(x)2 ∑

k
fiHik fkxk−di

)
(6)

where we have introduced D(x) = ∑l dlxl . In Supplementary Information S4 we present stochastic
simulations that show strong agreement with the predictions of this deterministic approximation. We
can derive equations like Eq. 6 for any choice of m. We write:

W (m)
i j = d jx jq

(m)
i (7)

where q(m)
i is the probability that a seedling of species i wins when competing against m− 1 other

seedlings. We build q(m)
i recursively:




q(1)i =
fixi

F(x)
. . .

q(m)
i =

fixi

F(x)
∑k Hikq(m−1)

k +q(m−1)
i ∑k Hik

fkxk

F(x)

(8)

which has a simple interpretation:
fixi

F(x)
∑k Hikq(m−1)

k is the probability that i wins against the winner

of the competition of involving the first m− 1 seedlings, while q(m−1)
i ∑k Hik

fkxk

F(x)
is the probability

that i is the winner of the competition among the first m− 1 seedlings, and beats the last seedling.
Consistently with the fact that these are probabilities, ∑i q(m)

i = 1 for any m. In this way, we can for
example recover the rate W (2)

i j we have introduced above:
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W (2)
i j = d jx jq

(2)
i = d jx j

(
fixi

F(x) ∑
k

Hikq(1)k +q(1)i ∑
k

Hik
fkxk

F(x)

)
= d jx j

fixi

F(x) ∑
k

2Hik
fkxk

F(x)
(9)

In general, the dynamics when considering m seedlings become:

dxi

dt
= ∑

j

(
W (m)

i j −W (m)
ji

)
= D(x)q(m)

i −dixi . (10)

Using this formulation, we write the system of equations describing the model in which three
seedlings are sampled. We calculate q(3)i :

q(3)i =
fixi

F(x) ∑
k

Hikq(2)k +q(2)i ∑
k

Hik
fkxk

F(x)

=
fixi

F(x) ∑
j,k

2Hi j
f jx j

F(x)
H jk

fkxk

F(x)
+

fixi

F(x) ∑
j,k

2Hi j
f jx j

F(x)
Hik

fkxk

F(x)

=
fixi

F(x) ∑
j,k

((
2Hi jH jk +2Hi jHik

) f jx j

F(x)
fkxk

F(x)

)

=
fixi

F(x) ∑
j,k

((
Hi jH jk +HikHk j +2Hi jHik

) f jx j

F(x)
fkxk

F(x)

)

yielding the system of equations

dxi

dt
= ∑

j

(
W (3)

i j −W (3)
ji

)
= xi

(
D(x)
F(x)3 fi ∑

j,k

(
2Hi jHik +Hi jH jk +HikHk j

)
f jx j fkxk−di

)
(11)

Having derived this general case, we dedicate Supplementary Information S1 to the study of the
simplified model we have introduced in the main text, in which fi = di = 1 for all i. It is easy to
derive a number of results for this simplified formulation, including the existence and uniqueness of
the coexistence equilibrium, the stability properties of such equilibrium when sampling two or more
than two seedlings, the expected number of coexisting species when H is random, and the construction
of an algorithm that takes as input a desired species-abundance distribution x∗, and produces infinitely
many H such that x∗ is an equilibrium of the system.

In Supplementary Information S2, we return to the more general case introduced above to test
the robustness of our findings when we relax the strong constraint of identical physiological rates for
all species. Supplementary Information S3 is dedicated to the discussion of intransitivity. Finally,
Supplementary Information S4 and S5 extend these models to situations in which the number of
individuals is finite, and therefore demographic stochasticity becomes important. We first consider the
case of an isolated ecological community (S4), and then open the community to the introduction of
new species by immigration or speciation (S5), allowing for a direct contrast with neutral models.
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S1 Identical physiological rates

In the Methods we have shown that, when considering systems with a large number of individuals,
our model (depicted in Fig. S1) can be written as a system of differential equations:

dxi

dt
= ∑

j

(
W (m)

i j −W (m)
ji

)
= D(x)q(m)

i −dixi , (S1)

where m is the number of seedlings that compete for filling each gap, W (m)
i j is the rate at which indi-

viduals of species j are replaced by those of species i, and the function q(m)
i can be built recursively:





q(1)i =
fixi

F(x)
. . .

q(m)
i =

fixi

F(x)
∑k Hikq(m−1)

k +q(m−1)
i ∑k Hik

fkxk

F(x)

. (S2)

For the cases of two seedlings competing, the equations describing the dynamics become:

dxi

dt
= ∑

j

(
W (2)

i j −W (2)
ji

)
= xi

(
D(x)
F(x)2 ∑

k
fiHik fkxk−di

)
, (S3)

and those describing the case in which we sample three seedlings become:

dxi

dt
= ∑

j

(
W (3)

i j −W (3)
ji

)
= xi

(
D(x)
F(x)3 fi ∑

j,k

(
2Hi jHik +Hi jH jk +HikHk j

)
f jx j fkxk−di

)
. (S4)

11



Higher-order interactions stabilize competitive dynamics Nature (2017) 548:210-213 Page 12

Processes
a) death

b) fecundities

c) competition

fi

Hij

Hji

Dynamics
a) a tree dies

b) seedlings are pooled, m are sampled and compete in sequence 

c) the winner fills the gap

m = 3

Figure S1: Illustration of the model, Left: the dynamics are controlled by the following parameters: (a)
di, the death rate of species i; (b) fi, the fecundity of species i; and (c) the matrix H, detailing the probability
that seedling from one species win against seedling of other species when competing to fill a gap. Right: a)
whenever a tree dies, we pool the seedlings, and select m to compete (b), with the winner filling the gap (c).

In this section, we study these models when we make the simplifying assumption of equal physi-
ological rates (di = fi = 1) for all species.

S1.1 Sampling two seedlings

When setting all fi = di = 1 in Eq. S3, we obtain Eq. 1 of the main text:

dxi

dt
= xi2∑

j
Hi jx j− xi (S5)

We want to show that this is equivalent to the replicator equation, Eq. 2 of the main text:

dxi

dt
= xi ∑

j
Pi jx j (S6)

where P = H−Ht . This is easy to show:
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xi

(
∑

j
2Hi jx j−1

)
= xi ∑

j
(2Hi jx j− x j)

= xi ∑
j
(Hi jx j +(1−H ji)x j− x j)

= xi ∑
j
(Hi j−H ji)x j

= xi ∑
j

Pi jx j

If x∗ is an equilibrium such that xi
∗ > 0 for all i, then Px∗ = 0, meaning that x∗ is an eigenvector

of P, corresponding to a zero eigenvalue.
The formulation in terms of P is also useful to connect to important results in game theory: P

is the payoff matrix for a two-player, zero-sum symmetric matrix game. Then, when H is random,
the game admits only one optimal strategy1,2, which in general is a mixed strategy composed of k
pure strategies, with k odd. The optimal strategy corresponds to the equilibrium x∗. This means that,
starting the dynamics with n species and any positive initial conditions, the same n−k species will go
extinct, and the same k species will coexist.

Though we believe that mild deviations from zero-sum (for example, cases in which the num-
ber of individuals is fixed on average) would not change qualitatively our results, we maintain this
assumption out of mathematical convenience, and because it allows us to connect directly with the
afore-mentioned results in game theory.

S1.1.1 Neutral cycling

Next, we want to show that the species that coexist cycle neutrally around the single equilibrium point.
To do so, we construct a Lyapunov function for the system and show that we can find a constant of
motion for system—meaning that trajectories will follow closed orbits.

Suppose x∗i > 0 is the equilibrium of Eq. 1 of the main text. We write the function

V (x) =−∑
i

x∗i log
xi

x∗i
. (S7)

Because of Gibbs’ inequality, V (x)≥ 0 for any 0 < xi < 1 and it is equal to zero only if xi = x∗i for
all i. Note also that at equilibrium 2∑ j Hi jx∗j = 1. We write

dV
dt

= ∑
i

∂V
∂xi

dxi

dt

=−∑
i

x∗i
xi

dxi

dt

=−2∑
i, j

x∗i Hi jx j +∑
i

x∗i

=−2∑
i, j

x∗i Hi jx j +1
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= ∑
j

(
−2∑

i
Hi jx∗i

)
x j +1

= ∑
j

(
−2∑

i
(1−H ji)x∗i

)
x j +1

= ∑
j

(
−2∑

i
x∗i +2∑

i
H jix∗i

)
x j +1

= ∑
j
(−2+1)x j +1

=−∑
j

x j +1

= 0.

Thus, we have found a constant of motion, meaning that the system will follow closed orbits. Hence,
unless we start the system precisely at x∗, the abundances will cycle neutrally around the equilibrium.

S1.1.2 Number of coexisting species for random interactions

Now we ask how many species will coexist when we draw the matrix H at random. We build random
matrices in two ways. First, we set each pair (Hi j,H ji) to (1,0) with probability 1/2, and to (0,1) with
probability 1/2; the diagonal elements are all set to 1/2. In this model, dominance is complete, and the
matrix H describes a tournament—a complete directed graph in which for each pair of species, an
arrow connects the winner to the loser. Second, for each pair (Hi j,H ji) (i 6= j) we sample a random
number z from the uniform distribution U [0,1], and set the values to (1− z,z); again, Hii = 1/2 for all
i. Thus H encodes a generalization of tournament graphs, called hypertournaments3.

We set n = 50, and build 10,000 matrices of each kind. The number of coexisting species k can
be found solving the corresponding linear program, as done by Allesina & Levine4. Finally, we tally
the number of coexisting species to estimate p(k|n). The results, reported in Fig. S2 show that both
settings result in the same histogram: p(k|n) = 0 when k is even, and p(k|n) =

(n
k

)
21−n when k is odd,

as predicted both for random tournaments4,5 and hypertournaments2.

S1.1.3 Building H given x∗

Finally, we provide an elementary argument for why only an odd number of species coexist at equi-
librium, unless we fine-tune parameters. The argument allows us to build an algorithm that accepts as
input a desired species-abundance distribution x∗, and produces infinitely many matrices H such that
x∗ is an equilibrium of Eq. 1, or Eq. 2 of the main text.

As we stated above, if all xi
∗ > 0 is an equilibrium, then x∗ is an eigenvector of P corresponding

to a zero eigenvalue.
A matrix with one or more zero eigenvalues is rank-deficient. Fisher & Ryan6 proved that, if the

n× n matrix H represents a tournament, then P has rank n when n is even, and rank n− 1 when n is
odd. Therefore, the matrix P will have an eigenvalue of zero only if n is odd—when the matrix H is a
tournament matrix, only an odd number of species can coexist.
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Figure S2: Number of coexisting species with random competition. Number of coexisting species
k in a random tournament (red) or hypertournament (blue) when the number of initial species is n= 50.
Bars: proportion of random (hyper)tournaments leading to the coexisting of k species (out of 10,000
simulations). Crosses: analytical expectation (p(k|n) = 0 when k is even,

(n
k

)
21−n when k is odd).
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When we build the matrix H at random by sampling the coefficients from a uniform distribution,
we have that the matrix has full rank (i.e., the set of rank-deficient matrices has measure zero). For
these matrices then, the same result found for tournaments holds2.

Clearly, one could build rank-deficient matrices—only, it is impossible to find this result at random
when sampling the coefficients from a continuous distribution. In the next paragraphs, we show having
a rank-deficient H automatically introduces a neutral manifold of infinitely many equilibria, and that
this case is unrobust: small perturbations of the coefficients will lead to an odd number of species
coexisting.

Armed with these results, we can build an algorithm that takes a desired relative species abundance
x∗, and builds a matrix H such that Eq. 1 and Eq. 2 have x∗ as an equilibrium. In fact, we show that one
can construct infinitely many matrices of this kind. The algorithm also makes apparent the implicit
assumptions we are making when we want an even number of species to coexist indefinitely.

The strategy is to build a matrix of eigenvectors U for the skew-symmetric matrix P, and the
corresponding diagonal matrix of eigenvalues ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ. Then, P = UΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛU−1. Finally, we have that Hi j =
(Pi j +1)/2.

The first case we examine is that of an odd number of species, n. We set the real vector r1 = x∗,
and draw n−1 random, real-valued vectors, r2, . . . ,rn. We modify the vectors r2, . . . ,rn to make them
orthogonal to r1 and each other. Writing U j as the jth column of U, we set: U1 = r1 = x∗, U2 = r2+ i r3,
U3 = r2− i r3, U4 = r4 + i r5, U5 = r4− i r5, etc. (note that i =

√
−1). Finally, we need to set the

eigenvalues. We choose Λ1,1 = 0, and we set the remaining eigenvalues in pairs: we draw a random
number z, and set Λ2,2 = i z, Λ3,3 = −i z; draw a second random number to determine Λ4,4 and Λ5,5,
etc. Once we have chosen the eigenvalues and eigenvectors, we compute P, and, if needed, normalize
the matrix such that minPi j ≥−1 and maxPi j ≤ 1 (dividing all elements by a constant simply re-scales
the spectrum).

Note that we have complete freedom in choosing all the eigenvalues and eigenvectors, besides the
first. Hence, we can produce infinitely many matrices P that have x∗ as an eigenvector associated with
a zero eigenvalue, and therefore we can produce infinitely many matrices H.

If x∗ contains an even number of species, we proceed in almost the same way, but we now need two
eigenvalues to be 0 (because the matrix P needs to be skew-symmetric, all the eigenvalues must have
real part 0, and conjugate imaginary parts), and two eigenvectors to be real. Therefore, we construct
the matrix U as: U1 = r1 = x∗, U2 = r2, U3 = r3 + i r4, U4 = r3− i r4, U5 = r5 + i r6, U6 = r5− i r6, etc.
We set Λ1,1 = Λ2,2 = 0, and the remaining eigenvalues at random, as done for n odd. Again, we can
build infinitely many P and therefore H.

This means that in order to have an equilibrium containing an even number of species, we need
to set two eigenvalues to zero: the matrix has rank n−2, so that the rows/columns of P are no longer
linearly independent. This is a very fragile situation, as small modifications of the coefficients of P (or,
equivalently, H) would break this fine-tuning. Hence, the dynamics around the equilibrium x∗ are not
robust. A more subtle point is that, given PU1 = PU2 = 0, any linear combination P(αU1 +βU1) = 0
as well. Therefore, in the case of an even number of species coexisting, we have infinitely many
equilibrium points, again stressing that this is a special (and biologically quite unrealistic) situation.
Small changes to the matrix H would invariably lead the system to collapse to neutral cycling around
an equilibrium containing an odd number of species.

Code implementing this algorithm can be found at git.io/vXZWF.
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S1.2 Sampling more than two seedlings

Under the hypothesis di = fi = 1, Eq. S2 reduces to




q(1)i = xi

. . .

q(m)
i = xi ∑k Hikq(m−1)

k +q(m−1)
i ∑k Hikxk

(S8)

and Eq. S1 becomes

dxi

dt
= q(m)

i − xi . (S9)

We want to show that if x∗ is the equilibrium of the model with two seedlings (m = 2), it is also an
equilibrium of the other models with m > 2. Consider Eq. S8 evaluated at x = x∗:





q(1)∗i = x∗i
q(2)∗i = 2x∗i ∑k Hikx∗k
. . .

q(m)∗
i = x∗i ∑k Hikq(m−1)∗

k +q(m−1)∗
i ∑k Hikx∗k

In Eq. S9 for m = 2, we have that Hx∗ = 1/2. It is easily seen that if q(m−1)∗
k = x∗, then q(m)∗

k = x∗,
and therefore, by induction, it follows that x∗ is a fixed point of Eq. S9 for any m.

S1.2.1 Sampling three seedlings

Now consider the system in Eq. S4, with identical physiologial rate di = fi = 1, describing the case of
m = 3

dxi

dt
= xi

(
∑
j,k

(
2Hi jHik +Hi jH jk +HikHk j

)
x jxk−1

)
= xi

(
2∑

j,k

(
Hi jHik +Hi jH jk

)
x jxk−1

)
, (S10)

which is Eq. 3 of the main text. This system of equations is equivalent to the replicator equation for a
three-player game in Eq. 4 of the main text,

dxi

dt
= xi ∑

j,k
Pi jkx jxk , (S11)

where the coefficient Pi jk = 2Hi jHik−H jiH jk−HkiHk j. We write:

xi

(
∑
j,k

(
2Hi jHik +Hi jH jk +HikHk j

)
x jxk−1

)
= xi ∑

j,k
(2Hi jHik +Hi jH jk +HikHk j−1)x jxk

= xi ∑
j,k
(2Hi jHik +(1−H ji)H jk +(1−Hki)Hk j−1)x jxk

= xi ∑
j,k
(2Hi jHik−H jiH jk−HkiHk j)x jxk
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= xi ∑
j,k

Pi jkx jxk

Now we want to show that now an equilibrium x∗ > 0 is globally stable. Taking the same function
V (x) defined in Eq. S7, we find

dV
dt

=−∑
i

x∗i
xi

dxi

dt

=−2 ∑
i, j,k

(
x∗i Hi jH jkx jxk + x∗i Hi jHikx jxk

)
+∑

i
x∗i

=−2∑
j,k

(
∑

i
x∗i Hi j

)
H jkx jxk−2∑

i
x∗i

(
∑

j
Hi jx j

)2

+1

=−2∑
j,k

1
2

H jkx jxk−2∑
i

x∗i

(
∑

j
Hi jx j

)2

+1

=−1
2
−2∑

i
x∗i

(
∑

j
Hi jx j

)2

+1

=−2∑
i

x∗i

(
∑

j
Hi jx j

)2

+
1
2
,

where we used ∑i x∗i Hi j = 1/2 and ∑ jk H jkx jxk = 1/2. Next we introduce ξ j := x j−x∗j (note that ∑ j ξ j =
0 by definition), obtaining

dV
dt

=−2∑
i

x∗i

(
∑

j
Hi j(x∗j +ξ j)

)2

+
1
2

=−2∑
i

x∗i

(
1
2
+∑

j
Hi jξ j

)2

+
1
2

=−1
2
−2∑

i
x∗i ∑

j
Hi jξ j−2∑

i
x∗i

(
∑

j
Hi jξ j

)2

+
1
2

=−2∑
j

(
∑

i
x∗i Hi j

)
ξ j−2∑

i
x∗i

(
∑

j
Hi jξ j

)2

=−∑
j

ξ j−2∑
i

x∗i

(
∑

j
Hi jξ j

)2

=−2∑
i

x∗i

(
∑

j
Hi jξ j

)2

≤ 0
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for any choice of ξ , and therefore, for any value of x. Assuming that the matrix H is of full rank,
dV/dt = 0 only if ξ = 0, i.e., only if x = x∗. Since V (x) ≥ 0 for any x and V (x) = 0 only if x = x∗,
dV/dt ≤ 0 implies that x= x∗ is a globally stable fixed point. Therefore, in the model where we sample
three seedlings we have global convergence—starting the system at any initial condition leads to the
same outcome, unless we have a rank-deficient H (e.g., the case in which we want an even number of
species to coexist, in which case the system will reach one of the infinitely many equilibria).

When we take more than three seedlings at a time, the results are qualitatively the same, but
convergence to the equilibrium is faster (Fig. S3).
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a) Sampling three seedlings

b) Sampling four seedlings

c) Sampling five seedlings

Figure S3: Sampling more than three seedlings accelerates the convergence to the equilibrium.
We took the system in Fig. 2d of the main text, and integrated the dynamics when we compete three (a), four
(b), or five (c) seedlings at a time.
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S2 Different physiological rates

S2.1 Sampling two seedlings

In this section, we explicitly study Eq. S3, which can be rewritten as

dxi

dt
=

xi

F(x)2

(
D(x)

(
∑
k

fi2Hik fkxk

)
−diF(x)2

)
. (S12)

If a feasible solution x∗ > 0 exists, it is the solution of

∑
k

Hik fkx∗k =
di

fi

F(x∗)2

2D(x∗)
. (S13)

The equation has the form:

∑
k

Hik fkx∗k = c
di

fi
, (S14)

whose solution is

x∗i = c
1
fi

∑
k

H−1
ik

dk

fk
. (S15)

The solution must satisfy ∑i x∗i = 1, and therefore we can set the normalization constant c:

x∗i =
1

fi ∑ jk H−1
jk

dk
f j fk

∑
k

H−1
ik

dk

fk
. (S16)

Having characterized the equilibrium, we turn to its stability. Assuming that all x∗i > 0 (i.e., that
the fixed point is feasible), we introduce the function V (x) defined in Eq. S7, obtaining

dV
dt

= ∑
i

∂V
∂xi

dxi

dt

=−∑
i

x∗i
xi

dxi

dt

=− 1
F(x)2

(
D(x)

(
2∑

ik
x∗i fiHik fkxk

)
−F(x)2 ∑

i
x∗i di

)
.

(S17)

Introducing Hik = 1−Hki in Eq. S13, we find

2∑
i

x∗i fiHik = 2F(x∗)− dk

fk

F(x∗)2

D(x∗)
. (S18)

and therefore
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dV
dt

=− 1
F(x)2

(
2D(x)F(x∗)F(x)−D(x)2 F(x∗)2

D(x∗)
−F(x)2D(x∗)

)

=− 1
F(x)2D(x∗)

(
2D(x)F(x∗)F(x)D(x∗)−D(x)2F(x∗)2−F(x)2D(x∗)2)

=
1

F(x)2D(x∗)
(D(x)F(x∗)−F(x)D(x∗))2 ≥ 0 .

(S19)

for any choice of x. This implies that any feasible fixed point (i.e., any positive solution of Eq. S13)
is either neutrally stable or unstable. Neutral stability (i.e., dV/dt = 0) is achievable if and only if the
ratio di/ fi has the same value for all the i. Consistent with this finding, Fig. S4 shows that whenever
physiological parameters are perturbed, the cycles become unstable, eventually leading to monodom-
inance.

S2.2 Sampling three seedlings

Finally, we study Eq. S4, that can be rewritten as

dxi

dt
=

xi

F(x)3

(
D(x)∑

jk
fi2Hi j

(
Hik +H jk

)
f jx j fkxk−diF(x)3

)
. (S20)

If a feasible solution x∗ > 0 exists, it is the solution of

∑
jk

Hi j
(
Hik +H jk

)
f jx∗j fkx∗k =

di

fi

F(x∗)3

2D(x∗)
. (S21)

Notice that the x∗ for the case of two seedlings does not solve this equation—the equilibrium
depends on the number of seedlings sampled, in contrast to what found when we assumed all physio-
logical rates to be the same.

Assuming that a feasible solution of Eq. S21 exists, we write the Lyapunov function V (x) (Eq. S7):

dV
dt

= ∑
i

∂V
∂xi

dxi

dt
=−∑

i

x∗i
xi

dxi

dt

=− 1
F(x)3

(
D(x)

(
2∑

i jk
x∗i fiHi j

(
Hik +H jk

)
f jx j fkxk

)
−F(x)3 ∑

i
x∗i di

)
.

(S22)

After some lengthy calculation, we find the expression

dV
dt

=
1

F(x)3D(x∗)

(
F(x∗)3D(x)2−2F(x∗)2F(x)D(x)D(x∗)+F(x)3D(x∗)2)+

− 2
F(x)3 ∑

i jk
x∗i fiHi j f jξ jH jk fkξk−

2
F(x)3 ∑

ik
x∗i fi(Hik f jξ j)

2
(S23)

that can be interpreted more easily. Take the case of fi = di = 1: then, only the last term is different
from zero, and since it is always non-positive, we find that the fixed point is globally stable. The two
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a) pairwise interactions higher-order interactions

b) pairwise interactions higher-order interactions

c) pairwise interactions higher-order interactions

d) pairwise interactions higher-order interactions

Figure S4: Dynamics with variable physiological rates. When introducing small changes to the phys-
iological rates (di and fi), the equilibrium become unstable for pairwise interactions: the system cycles away
from equilibrium, eventually leading to monodominance. For the same system in Fig. 1 of the main text, we
introduce different di and fi sampling them randomly from U [0.9,1.1]. Note that in all cases for pairwise inter-
actions the amplitude of the cycles increases with time, and that the dynamically-fragile case of the coexistence
of an even-number of species (c) is immediately broken. For higher order interactions, the dynamics are robust
to small changes in the parameterization. In this case, we recover the same qualitative dynamics found for the
case of all identical physiological rates (Fig. 2 of the main text), besides the fact that the coexistence between
an even number of species is broken.
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terms that appear when physiological rates are different do not have a definite sign. This implies that,
at least in principle, for some values of parameters the fixed point could be non-attractive. However,
note two facts: 1) dynamics are stable for fi = di = 1, and 2) the position of the fixed point and the
derivative of the Lyapunov function are both continuous functions of the physiological rates. It follows
that for a sufficiently small perturbation of the fi and the di away from 1 will not be able to make a
qualitative change to the dynamical properties of the model. Numerical simulations (Fig. S4, and next
section) show that this is indeed the case.

In summary, whether the physiological rates are allowed to vary or not, the case in which we
sample three seedlings is very different from that of sampling two seedlings. When we sample only
two seedlings, coexistence is always transient, while when we sample three seedlings, we can have
stable coexistence.

S2.2.1 Numerical analysis

We expect the dynamics of Eq. S3 to be very rich, including parameter and initial conditions combina-
tions leading to fixed points, limit cycles, and possibly chaos. Though a full analytic characterization
of this system of equations will be difficult to achieve, from an ecological point of view two questions
are important: a) can many species coexist when we allow physiological rates to vary?, and b) can we
reach coexistence from a variety of initial conditions? (i.e., is the basin of attraction of coexistence
large enough?). We use numerical simulations to attempt answering these questions.

The two numerical experiments follow the same basic setting. 1) We sample the relevant param-
eters: for a given number of initial species, n, the matrix H is drawn at random, the fertility values fi

are independently sampled from the uniform distribution U [1− v,1+ v], where the parameter v mod-
ulates the variability in the rates; di is obtained multiplying fizi, where zi is sampled from the same
distribution (hence, di/ fi is uniformly distributed, while di is not). Finally, initial conditions xi(0)> 0
are set at random. 2) The dynamics are integrated numerically for a long time (5 ·106 time units), so
that in most cases the transients should have elapsed. 3) We record the number of species coexisting
at the end of the simulation (k), and their identity.

There are two main limitations of this approach: first, because of the inevitable rounding errors,
we could declare a species extinct when it approaches zero density (though mathematically it could
eventually rebound); second, the opposite problem could also be present for certain parameterizations:
given the arbitrary length of integration, we could have species that are slowly but steadily going
towards extinction be declared extant in our calculations. We expect the effect of both problems to
be relatively small, such that our numerical simulations should approximate the actual dynamics quite
closely. This expectation is confirmed when inspecting the numerical results for v = 0, in which case
we should recover our analytical results.

In our first experiment, we take n ∈ {10,20,30} and v ∈ {0,0.05,0.1, . . . ,0.5} and produce 500
simulations for each combination of parameters. The histograms showing the frequency of the number
of coexisting species k for each parameter combinations are reported in Fig. S5. For v = 0 (and hence
identical physiological rates), the histograms are very similar to the analytic results in Fig. S2, though
in a few cases we still have an even number of species, meaning that for some of the simulations the
transients are very long. When we increase v, the average number of coexisting species is reduced, but
the decrease is slow and fairly linear, meaning that even when physiological rates are quite different
(e.g., v = 0.5), we still have a fairly high proportion of species coexisting.
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Figure S5: Number of coexisting competitors when physiological rates are different for all
species. We sampled independently both di and zi = di/ fi from the uniform distribution U [1− v,1 + v],
and varied v to explore how the variance in these rates affects coexistence (rows). For each choice of initial
number of species (n, columns), we generated a random matrix H, random initial conditions, and integrated the
dynamics in Eq. S4 for a long time (5 ·106 steps). We recorded the number species coexisting at the end of the
simulation, and produced a histogram by repeating the procedure 500 times for any choice of n and v. For v = 0,
the results should closely match those in Fig. S2. The results show that the histogram gently shifts to the left
when increasing v—as long as the physiological parameters are similar enough, we can have the coexistence of
many species.
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In the second numerical experiment we probe the size of the basin of attraction. As before, we
vary n and v to test the effect of the variability on physiological rates. Differently from the other
experiment, for each combination of n and v, we choose 100 parameterizations (i.e., setting H, d and
f ), and then we integrate the dynamics 100 times, starting from different initial conditions. We then
record how often the same set of species coexist at the end of the dynamics. A proportion of 1 means
that for all 100 initial conditions, we always found that the same set of species coexist at the end of
the simulation. A proportion lower than 1 means that depending on the initial conditions, we end
up with alternative outcomes. Out of the 1000 parameterizations (Fig S6), in 848 cases we found
that the endpoint was exactly the same for all 100 initial conditions (corresponding to a proportion of
1). In only 75 cases out of 1000, we found a proportion < 0.9 (meaning that at fewer than 90 initial
conditions led to the same outcome).

In summary, these numerical results confirm the intuition we built analytically: even when con-
sidering different physiological rates, the model allows for the long-term coexistence of many species,
with the attractor having a large basin. To lower coexistence levels, naturally one can make physiolog-
ical rates so different from each other that species are excluded, exactly as expected from ecological
considerations.
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Figure S6: Dependence of the attractor on initial coditions. For n = 10 or 20 (rows), and for different
values of v, we repeat the simulations in Fig. S5 but starting from 100 random initial conditions. The position of
the dots in the histogram corresponds to the number of species coexisting at the end of the simulations (k), and
the color to the probability of ending up with the same k species coexisting. Black corresponds to a probability
of 1, and the lightest shade of gray (n = 20, v = 0.1, k = 4) to a probability of 29%. In only 75 cases out of
1000 we found a probability < 0.9.
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S3 Intransitivity and coexistence

In the theory studied by Allesina & Levine4—where dominance is complete and the matrix H encodes
a tournament—species can coexist only if they are connected by an intransitive cycle such as in the
rock-paper-scissors game. The existence of intransitive cycles in competitive abilities of species has
found mixed evidence in empirical data, with few clear examples in marine sessile organisms7–9,
and in microbial systems10,11. In terrestrial plants, the consensus seems to favor strict competitive
hierarchies12,13, though recent statistical models suggest diffuse intransitive competition in speciose
communities14.

Allesina & Levine4 showed that intransitivity can arise whenever there are multiple resources, and
species experience a trade-off such that they cannot excel at competing for all resources simultane-
ously. Similarly, intransitivity can be due to spatial/temporal heterogeneity (e.g., one species wins in
the shade, the other in the open ground; one in the wet season, one in the dry), trophic interactions
(herbivores consuming preferentially strong competitors), and many other processes.

When we relax the strict requirement of complete dominance, but keep the physiological parame-
ters constant among species, we still require intransitivity—though now its definition is probabilistic.
In particular, we conjecture that whenever k species coexist, they are connected through a cycle in
the graph defined by the coarse-grained matrix H′ obtained by setting H ′i j = 1 whenever Hi j > 1/2

and H ′i j = 0 otherwise (as always, we assume H to be of full rank, and the coefficients to be sampled
from a continuous distribution, to avoid dealing with the case of Hi j being exactly 1/2 for i 6= j). Note
however that the reverse is not true: the fact that the species are connected through a cycle in H′ does
not guarantee coexistence, as shown by the following simple example. Take H to be:

H =




0.50 0.63 0.79 0.18 0.47
0.37 0.50 0.58 0.93 0.48
0.21 0.42 0.50 0.99 0.84
0.82 0.07 0.01 0.50 0.66
0.53 0.52 0.16 0.34 0.50




(S24)

where we underlined all the coefficients > 1/2. Solving for the equilibrium in the case in which we
sample two or more seedlings, we find x∗ ≈ {0.49,0.36,0,0.15,0}, meaning that species 3 and 5 will
go extinct. Note that species 1, 2, and 4 are connected by the “intransitive” cycle H1,2H2,4H4,1 =
0.63 ·0.93 ·0.82 with all coefficients > 1/2. When we coarse-grain the matrix we obtain the matrix H′:

H′ =




0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0




(S25)

in which two cycles connect all the species, yielding a prediction of x′∗ in which all the species would
have positive density (x′i

∗ = 1/5 for all i)—examining H′ we would expect coexistence among all
species, but analyzing the matrix H we predict the extinction of two species.

In summary, for identical physiological rates intransitivity is defined only probabilistically, but still
plays a role: all the species coexisting at equilibrium are connected through a cycle whose coefficients
are all greater that 1/2. The existence of such a cycle, however, does not guarantee coexistence.
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Next, we show that when we allow physiological parameters to differ between species intransitiv-
ity is not a necessary condition for coexistence. That is, a species can persist despite losing competitive
bouts with each and every other species more often that not. Given that we cannot solve analytically
for the equilibrium in this more general case, we report here just a few numerical examples that how-
ever are sufficient to illustrate this surprising result. Take for example the matrix:

H =




0.50 1.00 0.62
0.00 0.50 1.00
0.38 0.00 0.50


 (S26)

which is clearly transitive in probability—we can gather all the coefficients with value > 1/2 in the
upper-triangular part of the matrix. Yet, all species persist at equilibrium when for example we set
f = {1,1,1} and d = {7/4, 5/4,1} (Fig. S7a), or f = {1/2,1,1} and d = {1,1,1} (Fig. S7b).

Searching the parameter space, we can find larger communities that can persist despite a matrix
H that is transitive in probability. For example, Fig. S7c shows the persistence at equilibrium of a
seven-species community with:

H =




0.50 0.76 0.52 0.68 0.54 0.51 0.56
0.24 0.50 0.59 0.74 0.71 0.62 0.77
0.48 0.41 0.50 0.92 0.74 0.82 0.56
0.32 0.26 0.08 0.50 0.97 0.76 0.70
0.46 0.29 0.26 0.03 0.50 1.00 0.82
0.49 0.38 0.18 0.24 0.00 0.50 0.88
0.44 0.23 0.44 0.30 0.18 0.12 0.50




(S27)

and physiological parameters d = {4.5,5,3,6.5,0.6,6.0,1.3} and f = {3.7,4.5,2.5,7,0.7,9,2.5}.
These examples prove that intransitivity (in probability) is not a necessary condition for coexistence
when species have different physiological rates.
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a) Matrix H as in Eq. S26, f = {1,1,1} and d = {7/4, 5/4,1}

a) Matrix H as in Eq. S26, f = {1/2,1,1} and d = {1,1,1}

c) Matrix H as in Eq. S27

Figure S7: Dynamics under hierarchical competition. When we allow species to have different physi-
ological parameters, intransitivity is not necessary for coexistence. These time series are obtained for systems
in which we can order the species such that each species has a probability of winning Hi j > 1/2 for each i > j
(i.e., the matrix is transitive in probability).
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S4 Stochastic models

So far, we have studied communities whose dynamics are well-described by systems of differential
equations, assuming a large number of individuals (N → ∞). When the number of individuals is
finite, demographic stochasticity plays an important role, sometimes producing non trivial effects. To
test whether higher-order interactions influence dynamics in this setting, we explicitly simulate the
stochastic dynamics defined by the rates W (m)

i j = d jx jq
(m)
i .

Figure S8 shows the stochastic trajectories for a different number of competing individuals (m= 1,
2, or 3). The case m = 1 corresponds to a neutral model (in absence of variability of physiological
rates), m = 2 to pairwise interactions, and m≥ 3 to higher-order interactions. The deterministic anal-
ysis described in the previous sections is expected to be exact in the limit N→ ∞. In general, if noise
is not additive, as in the case of demographic stochasticity, the full stochastic dynamical behavior can-
not be predicted from the deterministic approximation. There are in fact many examples of models
in which stochasticity changes the stability properties of the solutions. For example, Biancalani et
al.15, have shown that noise not only governs the transition between alternative stable states, but can
also generate them; closer to the theme of this work, Capitán et al.16 have shown that the presence
of noise makes competitive Lotka-Volterra system lose species at lower values of similarity between
species compared to what expected under deterministic dynamics. In this section we show that, for
finite N, the importance of stochastic fluctuations depends (mainly, but not exclusively) on the stability
properties of the deterministic dynamics.

In the case of neutral stability, stochasticity produce non-trivial effects and the stochastic tra-
jectories deviate from the deterministic predictions. In our model, neutral stability in found when
physiological parameters are all identical, and m is either 1 (neutral case), or 2 (pairwise interactions).
When on the other hand we have a strong deterministic driver, stochastic fluctuations simply produce
fluctuations around the fixed point. For instance if higher-order interactions are considered (m ≥ 3),
the presence of an attractive fixed point constrains trajectories to fluctuate around the equilibrium
(Fig. S8). Finally, when the fixed point is unstable, deterministic dynamics drive species to extinction.

More quantitatively, the interplay between deterministic properties and stochasticity can be an-
alyzed considering the scaling of extinction times with the population size. Fig. S8 shows time of
extinction TN (averaged over 1000 realizations with random initial conditions) for different choices of
parameters and total population sizes N. When the fixed point is neutrally stable (m = 1 and m = 2,
with identical physiological rates) TN/N is approximately linear in N. When the fixed point is unstable
(m = 1 and m = 2 with different physiological rates), TN/N becomes sub-linear in N, a scaling that
reflects the deterministic dynamics driving one species to extinction. In the case of a stable fixed point
(m = 3) TN/N grows exponentially with N (see Fig. S8), implying the existence of a well defined
(meta)-stable state.
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Figure S8: Stochastic simulations without immigration. a) Stochastic trajectories for a rock-paper-scissors
system, when we vary the number of seedlings competing. Dotted lines correspond to the deterministic approximation. For
m = 1 and equal physiological rates, one recovers a neutral model. For equal physiological rates and pairwise interactions
(m = 2) stability is only neutral and the deterministic solution does not describe the stochastic trajectories. Densities fluctu-
ate around the fixed point, but the amplitude of these oscillations is driven by stochasticity, rather than being fixed as in the
deterministic case. For higher-order interactions (m = 3), densities fluctuate around the stable equilibrium of the determin-
istic system. When physiological rates are different, the stochastic trajectories are predicted by the deterministic equations.
For m ≤ 2, extinctions occur very rapidly, and are driven by the deterministic dynamics. For m = 3, trajectories fluctuate
around the stable equilibrium. In all the simulations the total population abundance was set to N = 1000. b) Scaling of the
average time to first extinction (TN ) vs. total population abundance N. For equal physiological rates and m ≤ 2, extinction
time scales approximately linearly with N, as expected in neutral models as well as in the case of pairwise interactions 17.
When three or more seedlings are sampled, time to extinction grows exponentially with N. This is a consequence of the
stability of the fixed point. When physiological rates are allowed to vary and m≤ 2, TN/N is very small, and scales logarith-
mically with N. The logarithmic scaling is a consequence of the instability of the deterministic equations. In agreement with
the deterministic analysis, the stability of the fixed point in the case m≥ 3 produces an exponential scaling of TN/N (see also
panel on the bottom right). In the case of varying physiological rates we considered f = (1.,1.2,0.8) and d = (0.9,1.,1.3).
Note that the scales of the x and y axis are different between different panels.
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S5 Stochastic models with immigration

Since its inception18,19 neutral theory has been set in a stochastic framework in which the number
of individuals is finite, and new species can be introduced by either speciation or immigration. Rich
communities are then built by balancing the inevitable extinction processes with the introduction of
new species.

Here we perform simulations that provide a direct comparison of our models with neutral models,
allowing us to test whether we can retain some of their strengths while overcoming some of their
limitations. Early critiques of neutral theory focused on the assumption of ecological equivalence and
zero-sum dynamics20. However, theories should be judged by their predictions, rather than assump-
tions, and in time neutral theory proved to be strong in at least three aspects: a) it can produce species-
rich communities21–23; b) it produces species-abundance distributions that resemble those observed
empirically21,23–25; and c) it is mathematically tractable21–24. Recently, however several authors high-
lighted how neutral models fail in at least two aspects: first, species’ abundances fluctuations seem to
be too modest, with respect to what observed in natural populations26; second, because species are
performing what amounts to a random walk in the space of abundances, very abundant species are
more likely to be very old—in contrast to empirical evidence27–29.

In this section, we consider simulations in which the number of individuals N is finite—therefore
explicitly considering demographic stochasticity—and new species can enter the system (through spe-
ciation or immigration from a metacommunity species pool) with probability ν . In this context, a
series of articles by McKane, Alonso and Solé22,30,31 have investigated the dynamics of systems in
which species interact in pairs, and dominance is either complete (Si j > 0 and S ji < 0 in the notation of
their first contribution22), or neutral (Si j = S ji = 0). Our approach to simulating community assembly
closely matches these models.

Our simulations are based on the following moves: a) the community is composed of a fixed
number of individuals, N; b) at each time step, a randomly chosen individual dies and is replaced;
c) the replacement can happen in two distinct ways: i) with probability ν a new species is created
with abundance 1; ii) with probability 1−ν we sample m individuals at random and compete the first
with the second, the winner with the third, etc. The winner of the last competitive bout is chosen for
replacing the individual that dies; d) whenever two individuals compete, their probability of winning
is encoded in the matrix H; e) new species establish random interactions with the residents (i.e., the
corresponding column and row in H are randomized).

The transition rates of this model are very similar to the ones obtained for closed systems, and can
be written as

W (m)
i j = x j

(
(1−ν)q(m)

i +νδi,S+1

)
, (S28)

where the term νδi,S+1 is the speciation term and constrain the new species that appears to be a new
one. The term q(m)

i is given by Eq. S8 for the case of equal physiological rates.
Note that for m = 1 we obtain q(1)i = xi, and thus interactions between the species do not play a

role, such as in neutral models; for m = 2 a mean-field, deterministic equilibrium exists, but is not
attractive; for m > 2 the equilibrium exists and is attractive. We can therefore contrast directly the
results obtained for neutral models with those in which species interact in an increasingly higher-
order fashion. Note that, for simplicity and to keep the analogy with neutral models, we are implicitly
assuming equal fertilities and death rates for all species.
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The algorithm is repeated for a sufficiently large number of time steps, and snapshots of the num-
ber of extant species and their abundance are taken at intervals that are sufficiently large to ensure that
the snapshots are statistically independent. In order to determine the spacing between the snapshots
(i.e., the typical relaxation time scale of the model), we start the system with a single species with
abundance N, and run the simulations until the species goes extinct—at time T . We then take 1000
snapshots of the system each spaced T time steps apart.

We ask three questions: a) can we assemble large, diverse communities? b) what is the shape of
the species abundance distribution? c) what is the relation between age and abundance of a species?

S5.1 Assembly and expected number of species

We start the system with a single species, at abundance N (we choose four different values of N: 500,
1000, 2500, 5000). We set the speciation rate ν to one of five values: 0.0001, 0.0005, 0.001, 0.005,
0.01. Finally, we choose a number of seedlings for each competitive bout, m: 1 (neutral model), 2, 3,
10. Each simulation is replicated ten times, for a grand total of 4×5×4×10 = 800 simulations. For
each simulation, we take 100 snapshots spaced as described above to ensure independence.

Neutral theory predicts the average number of species to be21, in the limit of large N,

〈S〉= 1−Nν log(ν)/(1−ν) . (S29)

In Fig. S9, we show that the expected number of species, obtained averaging over all the snapshots
and replicates, matches closely with what expected under neutrality, irrespective of the number of
seedlings m.

This is an important result, because it means that we can assemble large communities even when
species do interact with each other. This is not trivial, given that we showed above that in the deter-
ministic approximation we cannot have an even number of species coexisting, and hence we could not
move from one species to three in this setting. We note that there seem to be a small, yet systematic,
trend in which sampling more seedlings (m > 1) results in elevated number of species at equilibrium.
Though this effect seems small and is only apparent for small values of ν , it should be investigated
further.

S5.2 Species-abundance distribution

The ability to reproduce empirically observed Relative Species Abundance (RSA) patterns is one of
the main successes of neutral theory. Fig. S9 shows the RSA (averaged over snapshots and replicates)
for different values of the speciation rate ν and the number of seedlings m. Surprisingly, neutral theory
predictions are very similar to the ones of interacting models, independently of m. This suggests that
the prediction of neutral theory are extremely robust, and are valid even when neutrality is broken. On
the other hand, it also implies that RSA are not particularly informative of the dynamical properties
of ecological communities32,33—RSA is by and large determined by demographic stochasticity that
dominates the dynamics of rare species.

S5.3 Age and abundance

While neutral theory predicts and connects many ecological patterns including spatial and dynamical
ones23, it fails at predicting quantities on an evolutionary time scale. In particular, neutral models
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Figure S9: Diversity in stochastic simulations with immigration. Panel a) shows the average number
of extant species in the stochastic model with immigration/speciation. The black line represents the expectation
1−Nν log(ν)/(1−ν) for neutral theory21. The error bars enclose 90% of the distribution. Panel b) shows the
Relative species abundance, averaged over snapshots and replicates. The RSA is reported using a logarithmic
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predict a monotonic relationship between species ages and their abundances28,29. When applied to
tropical rainforests, this relationship would paradoxically imply that the most abundant species would
be older than the Earth itself27,34.

We performed an analysis similar to the one shown in Chisholm & O’Dwyer28. Figure S10 shows
the prediction for age-abundance relationship for different values of population size N, speciation rate
ν and number of seedlings m. For m = 1 we recover a neutral model and the relation is monotonic
(an analytical formula can be found in O’Dwyer & Chisholm29). For m > 1, we obtain that for small
abundances, whose dynamics is likely dominated by demographic stochasticity, age and abundance are
still positively correlated. For larger abundance, on the other hand, the predictions of neutral models
and the ones for models of interacting species strongly diverge. In particular, we obtain that, for m> 1,
the relation reaches a plateau, therefore strongly reducing the predicted age for very abundant species.
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Figure S10: Species age in stochastic simulations with immigration. Age-abundance relationship
averaged over species, snapshots and replicates. For the neutral model (m = 1, red dots and line) we expect a
monotonically increasing relationship28,29, while in models with competition this correlation is lost for large
abundances.



Higher-order interactions stabilize competitive dynamics Nature (2017) 548:210-213 Page 38

References

[1] Jonasson, J. On the optimal strategy in a random game. Electronic Communications in Proba-
bility 9, 132–139 (2004).

[2] Brandl, F. The distribution of optimal strategies in symmetric zero-sum games. arXiv preprint
arXiv:1611.06845 (2016).

[3] Maybee, J. S. & Pullman, N. J. Tournament matrices and their generalizations, I. Linear and
Multilinear Algebra 28, 57–70 (1990).

[4] Allesina, S. & Levine, J. M. A competitive network theory of species diversity. Proceedings of
the National Academy of Sciences USA 108, 5638–5642 (2011).

[5] Fisher, D. C. & Reeves, R. B. Optimal strategies for random tournament games. Linear Algebra
and its Applications 217, 83–85 (1995).

[6] Fisher, D. C. & Ryan, J. Optimal strategies for a generalized “scissors, paper, and stone” game.
American Mathematical Monthly 99, 935–942 (1992).

[7] Buss, L. & Jackson, J. Competitive networks: nontransitive competitive relationships in cryptic
coral reef environments. The American Naturalist 223–234 (1979).

[8] McCoy, S. & Pfister, C. Historical comparisons reveal altered competitive interactions in a guild
of crustose coralline algae. Ecology Letters 17, 475–483 (2014).
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[31] Solé, R. V., Alonso, D. & McKane, A. Self-organized instability in complex ecosystems. Philo-
sophical Transactions of the Royal Society of London B: Biological Sciences 357, 667–681
(2002).

[32] Chave, J., Muller-Landau, H. C. & Levin, S. A. Comparing classical community models: theo-
retical consequences for patterns of diversity. The American Naturalist 159, 1–23 (2002).

[33] Purves, D. W. & Pacala, S. W. Ecological drift in niche-structured communities: neutral pattern
does not imply neutral process. Biotic Interactions in the Tropics 107–138 (2005).

[34] Ricklefs, R. E. A comment on Hubbell’s zero-sum ecological drift model. Oikos 100, 185–192
(2003).


