Looking locally to see globally:
motif sampling to distinguish interaction type and
predict dynamical properties of whole networks

Matthew J. Michalska-Smith

University of Chicago
distinguish interaction type
Gustav Klimt, Mohnfeld
Piet Mondrian, Composition with Grids: Checkerboard Composition with Light Colors
How can we tell where this matrix has come from?
Why might this be desirable/interesting?

- Insights into mechanisms of network formation
- Unknown/ambiguous interactions

Toju, et al., Nature Communications, 2014
Why might this be possible?

- Observed differences (\textit{sensu} Thébault & Fontaine, Science, 2010)
- Different reactions/ coevolutions to mutualistic vs antagonistic interactions

Thébault & Fontaine, Science, 2010
Data

- **323 Bipartite Networks**
 - 3-21977 rows
 - 2-888 columns
 - 0.008-0.93 connectance

- Subdivided into 4 types, 14 subtypes

<table>
<thead>
<tr>
<th>Antagonism</th>
<th>Mutualism</th>
<th>Biogeography</th>
<th>Non-biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria-Phage</td>
<td>Ant-Plant</td>
<td>Species-Islands</td>
<td>Awards-Recipients</td>
</tr>
<tr>
<td>Host-Parasitoid</td>
<td>Plant-Seed Disperser</td>
<td>Species-Mountains</td>
<td>Participant-Answer</td>
</tr>
<tr>
<td>Host-Parasite</td>
<td>Plant-Pollinator</td>
<td>OTU-Body Site</td>
<td>Cultural Evolution</td>
</tr>
<tr>
<td>Plant-Herbivore</td>
<td>Anemone-Fish</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods: Measuring network properties

36 nonindependent metrics for each network

- Number of rows, columns, edges, connectance
- Leading eigenvalues
- Gaps between leading eigenvalues
- Traces of matrix powers
- Subgraph (motif) counts
- Nestedness
- Modularity
Methods: Controlling for unreliable variation

Randomized Networks

- Erdős-Rényi
 - Preserves *average* number of interactions/species
- Configuration
 - Preserves *actual* number of connections/species

Normalization

- p-value
 \[
 \text{Number of random networks with Value} \leq \text{Observed Value} \over \text{Number of randomizations}
 \]

- z-score
 \[
 \frac{\text{Observed value} - \text{Mean of random network values}}{\text{Standard deviation of random values}}
 \]
Principal Component Analysis
Desired results
Desired results
P-Values

![Graph showing a scatter plot with PC1 and PC2 axes. Different subtypes and types are represented with various markers and colors.]
Significantly Over/Under
Significantly Over/Under
What went wrong?

Insufficient Power?
- More data
- More metrics

Improper normalization?
- Conserve subgraph distributions

Low resolution?
What if nothing went wrong?

Variation within network types/subtypes is greater than variance between them

(Biological) networks are more similar than we thought

The processes which we invoked to form our expectation are not (as) important to network structure
Take-Home Message

There is no silver bullet

- Biological networks are hard to disentangle using network structure
- Further exploration is needed to identify which (if any) structural properties are important in delineating different types of biological networks
thank you

Stefano Allesina
Elisa Thébault
Jacopo Grilli
Jakez Rolland
What about “known” differences?

Thebault & Fontaine, Science, 2010