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Abstract1

Many of the most impactful diseases that affect humans, livestock, and wildlife have clusters in their population-2

genetic variability that we classify as strains. Importantly, host immunity to one of these strains is neither inde-3

pendent from nor equivalent to immunity to related strains. This partial cross-protective immunity affects disease4

dynamics across the population as a whole and can dramatically influence intervention strategies. While the study5

of multi-strain diseases goes back decades, this work has not yet been generalized to a loosely connected collection of6

subpopulations, i.e. a metapopulation. Starting from the strain theory of host-pathogen systems proposed by Gupta7

(1998), we simulate multi-strain disease dynamics on a network of interconnected populations, characterizing the8

effects of parameterization and network structures on these dynamics. We find that dynamics propagate through9

the metapopulation network, even if parameters vary between populations. Moreover, in chains of connected pop-10

ulations experiencing cyclical dynamics, the movement of (partially) immune individuals dampens the dynamics11

of populations further along the chain. This work serves as an important first step in extending prior results on12

multi-strain diseases to a generalized population structure. This extension is particularly apt in the case of livestock13

production, where a system of mostly isolated populations (farms) is connected through the forced movement of14

individuals.15
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1 Introduction16

Many of the most impactful infectious diseases that affect humans, livestock, and wildlife have17

clusters in their population-genetic variability that we classify as strains. Such variation in pathogen18

genotype often leads to differences in phenotype as well, importantly affecting the efficacy of host19

immune defenses. While the human immune system is usually capable of preventing re-infection20

with a pathogen to which it has been previously exposed, sufficient evolution on the part of the21

pathogen can lead to reduced recognition by the host. In some cases, this change is not sufficient22

to completely avoid recognition, however, leading to an immune response that is neither as strong23

as would be in the case of re-exposure to the same strain, nor as weak as in the case of exposure to24

a novel pathogen. This partial cross-protective immunity can lead to reduced transmission as well,25

affecting disease dynamics across the population.26

Malaria, Cholera, Human Papillomavirus Virus, Dengue, Porcine Reproductive and Respiratory27

Syndrome, Brucellosis, etc. have strain structure, but differ in both the number of strains and the28

level of cross-protective immunity afforded by past exposure to similar strains. Perhaps the most29

well-studied example is that of Influenza (flu), a viral respiratory tract infection that counts humans30

among its many potential hosts and has substantial economic and public health consequences31

worldwide (Molinari et al., 2007; Fan et al., 2016; Peasah et al., 2013).32

While the study of multi-strain diseases goes back decades, this work has not yet been generalized33

to a loosely connected collection of sub-populations, i.e. a metapopulation. Initially introduced34

through the concepts of island biogeography, this idea can be generalized to a variety of systems,35

including human movement between cities, livestock transport between farms, and populations liv-36

ing in fragmented natural habitats. In each case, there exist relatively high-density areas which are37

connected to one another through a network of individuals’ movement. This framework allows the38

application of network analyses that can characterize patterns of connection within the population39

as a whole.40

Historically, metapopulation studies have been been divided into two main camps: those that41

model within-patch dynamics and “cell occupancy” models in which only the presence or absence42
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of a given species within a patch is recorded (Taylor, 1988), with the latter receiving much more43

theoretical attention. Importantly, this latter case rests on an assumption of temporal separation in44

which local dynamics occur on a timescale that can be treated as instantaneous relative to that of45

the between-patch dynamics (Hanski, 1994). When considering diseases in systems with relatively46

high migration rates, however, this assumption rarely holds and the presence-absence approach can47

significantly affect model accuracy, especially when individual disease status might affect migration48

rates.49

Here, we build on the strain theory of host-pathogen systems proposed by Gupta (1998), considering50

the case where a collection of populations undergoing local dynamics are furthermore interconnected51

through the movement of individuals between populations. We simulate disease dynamics on this52

system, characterizing the effects of parameterization and network structures on these dynamics.53

This work is divided into three sections: first, we explore the simple case of interconnected popu-54

lations with identical parameterizations. Second, we consider the case in which parameters differ55

between populations. Finally, we explore the case of a larger network of connected populations,56

looking at the role of network structure on key measures of disease progression.57

2 Methods58

2.1 Model framework for one population59

We work from a system of ordinary differential equations detailing the proportion of a population60

in classes based on current and past exposure to different strains of a pathogen. We signify a strain61

i = {x1, x2, . . . , xn} as a set of n loci, each of which can take on a finite number of alleles. For62

instance, a pathogen with two loci (a and b) and two alleles at each loci has a total of four potential63

strains: {a1, b1}, {a1, b2}, {a1, b1}, {a2, b2}. Importantly, in this model framework, the number64

of strains is fixed and finite. While strains may go extinct over time, there is no process for the65

generation of new strains or to re-introduce strains that had previously gone extinct (Gupta, 1998,66

but see).67

The model consists of sets of three nested equations (one set for each strain): w, z, and y, where68
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each set consists of as many equations as there are strains. wi represents the proportion of the69

population which has been exposed to a strain j of the pathogen, where strain j has at least one70

allele in common with strain i, i.e., j ∩ i ̸= Ø. zi represents the proportion of the population that71

has been exposed to strain i itself. Finally, yi represents that proportion of the population currently72

infected with strain i (and thus capable of infecting others). Thus, the proportion of the population73

in yi is also in zi and the proportion of the population in zi is also in wi, and yi ≤ zi ≤ wi. The y74

class is analogous to the I class in standard SI, SIR, etc. single-strain frameworks, while w and75

z are composed of combinations of I and R classes. The susceptible population is not modeled76

explicitly in this framework.77

These equations have the form:78

dyi
dt = β ((1− wi) + (1− γ)(wi − zi)) yi − σyi − µyi

dzi
dt = β(1− zi)yi − µzi

dwi

dt = β(1− wi)
∑

j∋j∩i ̸=Ø
yj − µwi

(1)

Where, as above, we denote strains as subscripts and in the equation for wi we sum over all strains79

j which share at least one allele with the focal strain i. β, σ, and µ are the infection, recovery, and80

death rates, respectively. γ is an indicator of the level of cross-protective immunity gained by prior81

exposure to alleles in the target strain. Note that while we depict only one value per demographic82

parameter (i.e., all strains are functionally equivalent) for notational clarity, these values could also83

vary by strain (e.g., βi) in this framework.84

Note that immunity in this framework is non-waning: exposure to a strain yields consistent pro-85

tection from future infection over the lifespan of the individual. The level of this infection is86

dichotomous: with respect to the same strain, it is complete protection, with respect to any strain87

sharing at least one allele, it modifies infection risk according to the parameter γ. Importantly, we88

also do not distinguish between loci, assuming that sharing an allele at any locus is functionally89

identical to sharing an allele at any other locus.90
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2.2 Extensions to consider more than one population91

Following Xiao et al. (2011), we model movement between populations using a dispersal matrix92

∆ = A − E, where A is the weighted adjacency matrix indicating the proportion of individuals93

moving from from patch i (row) to patch j (column) and E is a diagonal matrix representing94

emigration, where each entry Ejj =
∑n

i=1Aij where n is the number of patches. Thus, the whole95

system can be depicted by a set of three equations for each strain i in each patch k:96

dyi,k
dt = β ((1− wi,k) + (1− γ)(wi,k − zi,k)) yi,k − σyi,k − µyi,k +

∑
l

∆klyj,l

dzi,k
dt = β(1− zi,k)yi,k − µzi,k +

∑
l

∆klzj,l

dwi,k

dt = β(1− wi,k)
∑

j∋j∩i ̸=Ø
yj,k − µwi,k +

∑
l

∆klwj,l

(2)

Where each equation is now additionally indexed according to population. While in principle the97

elements of ∆ can take any value [0, 1], signifying a movement of between 0 and 100% of individuals,98

for simplicity we use a constant value of δ = 0.1 for the strength of each movement. Sensitivity to99

this value is explored in the Supplementary Information.100

Note that this formulation assumes uniform sampling for migration between populations. One101

might imagine cases in which currently infectious individuals are less likely to migrate than those102

who have recovered and now have immunity. We explore this variation in migration structure in103

the Supplementary Information.104

This framework can be applied to a metapopulation of arbitrary size and complexity. Fundamen-105

tally, the dynamics of each population will be governed by a set of three equations per disease strain,106

and these equations are interlinked within a population by partial, cross-protective immunity, and107

between populations through a network specifying movement of individuals between patches. Thus,108

the total number of differential equations for any given system will be 3 x the number of strains x109

the number of patches in the metapopulation.110
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2.3 Simulation Prodedure111

All simulations were carried out in Julia (Bezanson et al., 2017), with graphics produced using the112

ggplot package (Wickham, 2016) in R (R Core Team, 2019). In addressing the first two objectives113

mentioned above, we fix the values of all variables other than γ (the degree of cross-protective114

immunity) and ∆ (the network of movement information). The former is varied to demonstrate the115

variety of dynamics obtainable in this modeling framework (as in Gupta (1998)), while the latter116

varies the number and interconnections of the network patches.117

For each of the following simulations, we assume that there is no mortality, but add movement out118

of each sink population to balance in- and out-flows in the system. This simplification does not119

qualitatively change the dynamics of the system.120

For Figure 1, we use a movement network described by a chain of populations, i.e. A→ B → C → D

or

∆ =



−δ δ 0 0

0 −δ δ 0

0 0 −δ δ

0 0 0 −δ


,

where δ = 0.1.121

For figure 2, we restrict our consideration to a system of two patches, identical in all respects other

than the parameter γ, which is set to either induce a steady state of coexistence (γ = 0.25 in

population A) or cyclical coexistence (γ = 0.75 in population B). We then display three potential

patterns of connection: A→ B (right column), B → A (left column), and the case of no migration

between patches (middle column). Specifically, we set

∆ =

−δ δ

0 −δ

 ,∆ =

−δ 0

δ −δ

 , and ∆ =

−δ 0

0 −δ

 ,

respectively.122
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Finally, for figure 3, we consider a system of three populations: A→ C ← B, or

∆ =


−δ 0 δ

0 −δ δ

0 0 −δ

 ,

where populations A and C have γ = 0.25, but population B has γ = 0.75.123

3 Results124

3.1 Dynamics are dampened along chains in the metapopulation network125

We find that even when all populations share the same parameterizations and initial conditions,126

that populations further along network chains have dampened oscillatory dynamics compared to127

those they would exhibit in isolation (FIgure 1). This is likely due to the movement of (partially) im-128

mune individuals between the populations, increasing the proportion of specific and cross-reactively129

immune individuals in populations further along the chain. While infectious individuals move at130

an equal rate, the proportion of the population that is currently infectious at any given time is131

much smaller than the proportion with immunity.132

3.2 Dynamics propagate through metapopulation networks133

We find that in the case of a simple chain of populations, the dynamics of sink populations can134

be overridden by the dynamics of source populations (Figure 2). Interestingly, this is true both135

of cyclical dynamics overruling stable dynamics and vice versa. In the case of multiple source136

populations, cycles tend to dominate over stable dynamics. Importantly, this migration can allow137

for strain coexistence even in populations where the disease parameters would suggest extinction138

of one or more strains.139

3.3 There exists a dynamics hierarchy140

The issue of dynamics propagation gets more complicated when there are multiple, varying source141

populations for a given sink population. We find that there is a hierarchy of dynamics in their142

propagation through the network: cyclical dynamics overpower steady states and chaos overpowers143
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Figure 1: Connecting multiple populations with the same dynamics results in dampened clycles
in populations further down the chain. Here, populations are connected such that A → B →
C → D. Importantly, the mean level of immunity (cross-reactive and specific) increases in each
sequential population, while the mean level of currently infectious decreases. All populations have
parameters β = 40, σ = 10, µ = 0, δ = 0.1, γ = 0.75. The strain structure consists of two loci
with two alleles at each. Here, we show only one strain’s dynamics for clarity.
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Figure 2: The effect of linking populations with different model parameterizations. While in
isolation (center column), population A has steady-state dynamics and population B has cyclical
dynamics, when the two populations are linked by migration, the sink population inherits the
dynamics of the source population (left and right columns). This is true regardless of the direction
of the movement. Populations have parameters β = 40, σ = 10, µ = 0, δ = 0.1 in common
and γ = 0.25, 0.75 respectively. As before, we use a two-loci, two-allele strain structure, but show
only one strain for clarity.
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cycles, regardless of any imbalance in the relative contributions of the sources. Put another way,144

if just one of many source populations (or a small proportion of the total movement) has cyclical145

dynamics, the sink population will also have cyclical dynamics.
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Figure 3: The effect of multiple source populations with differing dynamics on the sink population.
Here, we have populations A and B feeding into population C at the same rate of δ = 0.1. Popu-
lations A and C show steady state dynamics, with β = 40, σ = 10, µ = 0, γ = 0.25. Population
B shows cyclical dynamics with γ = 0.75 and all other parameters the same. Note that, even
though the parameters of population C would lead to steady state in the absence of migration, we
see cyclical dynamics being inherited from population B.
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