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Abstract

Stability of complex ecological networks depends both on the interactions between species
and the direct effects of the species on themselves. These self-effects are known as “self-
regulation” when an increase in a species’ abundance decreases its per capita growth rate.
Sources of self-regulation include intraspecific interference, cannibalism, time scale separation
between consumers and their resources, spatial heterogeneity, and nonlinear functional responses
coupling predators with their prey. The influence of self-regulation on network stability is
understudied; worse, the empirical estimation of self-effects poses a formidable challenge. Here
we show that empirical food web structures cannot be stabilized unless the majority of species
exhibit substantially strong self-regulation. We also derive an analytic formula predicting the
effect of self-regulation on network stability with high accuracy, and show that even for random
networks, as well as networks with cascade structure, stability requires negative self-effects for a
large proportion of species. These results suggest that the aforementioned potential mechanisms
of self-regulation are likely more important in contributing to the stability of observed ecological
networks than previously thought.

What keeps the exponential growth capacity of natural populations in check? Some regulatory
mechanism is required, a feedback decreasing growth rates when abundance is high and increasing
them when abundance is low. Common regulating factors include resource shortage, predation
pressure, pathogen load, refuge availability, etc. Sometimes, however, the per capita growth
rate of a species has a direct negative dependence on its own abundance—this is called “self-
regulation”1,2. Self-regulation may be caused by direct mechanisms such as intraspecific interference
or certain forms of cannibalism. Also, it is sometimes possible to eliminate from consumer-resource
relationships the explicit dependence of the consumer on the resource (or vice versa) via a separation
of time scales, leading to “effective” self-regulation, as was done by MacArthur in deriving the
Lotka–Volterra equations from an underlying consumer-resource system3. Finally, immigration
from outside sources and nonlinear functional responses coupling predators and prey can give rise
to self-regulatory effects. The important commonality across all of these mechanisms is that they
can cause per capita growth rates to directly depend on the abundance of the species in question.

How important is self-regulation in natural systems? To further specify what we mean by
“important”, in this work we will focus on the property of local asymptotic stability, i.e., whether
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small perturbations of species’ abundances away from an equilibrium point tend to be dampened,
with the system returning to the equilibrium. Local asymptotic stability is assessed using the the
community matrix (Jacobian evaluated at the equilibrium point)4. This matrix having its rightmost
eigenvalue in the left half of the complex plane signals the stability of the system; otherwise the
system is unstable. Self-regulatory effects appear in the community matrix as negative entries along
its diagonal (Supplementary Information [SI], Section 1).

We ask what fraction of species in large ecological networks must exhibit self-regulation for the
system to be (locally asymptotically) stable, and how strong this self-regulation must be. In two
simple reference cases, the answer is known: first, a system completely devoid of any self-regulation
cannot be stable; second, sufficiently strong simultaneous self-regulation of all species always leads
to stability (SI, Section 1.2). The difficult question is whether stability can be achieved by something
between these extremes. It is known that some ecological networks can be stabilized by just a single
well-chosen self-regulating species5. However, such systems have especially simple topologies, and
it is unclear whether empirical networks with more complex structure could be stabilized in the
same way.

Views on this question differ strongly between ecologists: some believe most species must
experience at least weak self-regulation at least some of the time2,6,7, while others maintain that
only primary producers and maybe top predators self-regulate to an appreciable degree8–11. To
some extent, this disagreement is undoubtedly fueled by the unfortunate fact that the empirical
study of self-regulation is a formidable challenge. While it is true that measuring a population’s
growth rate as a function of its abundance typically yields a negative relationship between the two12,
this will in general not be due to direct self-effects but rather to depletion of consumables, greater
parasitic load at high abundance, or increased predation pressure10. Though disentangling causes is
not impossible13–16, it is still a difficult task from an empirical point of view.

For this reason, here instead we look at the importance of self-regulation by assessing its
theoretical consequences, and seeing if they are consistent with certain broad empirical patterns.
Since one such pattern is the relative stability of ecological communities at certain spatiotemporal
scales, one can inquire what levels of self-regulation would be required to confer stability to large
ecological communities.

Results

Self-regulation in empirical food webs

To answer the question of how common and how strong self-regulation must be to achieve stability,
we analyzed empirical food webs. First, we used published parameterizations obtained by Jacquet
et al.17 using the Ecopath modeling framework18 (Table 1). Since these have already been param-
eterized, they can be used out of the box. Their disadvantage is that they are highly aggregated
networks, containing between 39 and 51 species. To see also what results one might obtain from
more species-rich communities, we also parameterized 12 well-resolved food webs (see Methods)
containing between 170 and 484 species (Table 2). The two approaches also make it possible to
compare their results for consistency.

Initially, none of the webs and parameterizations included self-effects. For each web, we
gradually increased the fraction of self-regulating species P from 0 to 1. For each P, the identities of
the self-regulating species were randomly assigned 1000 times, and the fraction of cases which ended
up stable was tallied. This procedure was then repeated for different strengths of self-regulation.
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Name Species Links
Chesapeake Present51 41 167
Mid Atlantic Bight50 51 515
Moorea Barrier Reef52 39 267
Newfoundland Grand Banks (1900)53 48 519
Newfoundland Grand Banks (mid-1980s)53 48 519
Newfoundland Grand Banks (mid-1990s)53 48 525
Tampa Bay54 48 340

Table 1: Information on the seven largest Ecopath networks parameterized by Jacquet et al.17, with each row
corresponding to a different web. Columns indicate, respectively, the name of the web (with a reference for
the source of the original data), its number of species and the number of links.

Name Species Links Structural rank
Carpinteria Salt Marsh55 272 3878 197
Flensburg Fjord46 180 1567 128
Kongs Fjorden56 268 1632 164
Little Rock Lake47 181 2316 150
Lough Hyne57 349 5088 287
Otago Harbour48 180 1856 158
Punta Banda55 355 5291 234
Caribbean Reef58 249 3293 204
San Quintin55 289 3934 179
Serengeti49 170 585 54
Sylt Tidal Basin59 230 3298 215
Weddell Sea60 484 15435 448

Table 2: As Table 1, but for the twelve highly resolved empirical food webs. An additional column shows the
structural rank45 of each web (maximum possible rank the matrix of the web can attain assuming its nonzero
entries are arbitrary).

For the Ecopath webs, at least 50% of species must exhibit substantially strong self-regulation
if the community is to have a realistic chance of being stable (Figure 1a). Instead of just primary
producers and top predators, it is in fact a majority of species that must self-regulate. This result
is even stronger in the well-resolved food webs (Figure 1b). The qualitative pattern is the same as
before, but there is a large quantitative difference: instead of over half, now over 90% of species
must exhibit self-regulation for the network to be stable. This was true regardless of which particular
well-resolved network we analyzed, or which particular parameterization we applied to them (SI,
Section 7).

Although we have performed the analysis for several different values of the strength of self-
regulation, one might wonder whether imposing extremely strong self-effects on just a few species
could stabilize the networks. Our results yield a counterintuitive answer to this question: given a
set of self-regulating species, the most stabilized configurations are not those with the strongest
self-interactions, but those with intermediate ones (Figure 1). Beyond a point, increasing the strength
of self-regulation actually destabilizes the system. Though this may seem strange at first, it can be
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Figure 1: The fraction of self-regulating species required for stability, in (a) the Ecopath-modeled Mid-
Atlantic Bight50 web, and (b) the Serengeti49 food web parameterized with g = −0.95 and no indirect
effects (see Methods). Each grid of the heat-map represents the probability of stability given q and the
fraction of self-regulating species P, ranging from white (0% chance of stability) to blue (100% chance). The
yellow line is the lowest fraction of self-regulating species compatible with stability for the given strength
of self-regulation, found using a stochastic search algorithm. Notice that the highest overall probability of
stability is always obtained for an intermediate value of self-regulation strength.

understood by considering an example where all but one single species are self-regulating. Very
weak self-effects will not be able to stabilize any system in the first place. On the other hand, for
prohibitively strong self-regulation, the one single species without the burden of a negative self-effect
has such an overwhelming advantage over all the others that it will drive them extinct. If the system
is to be stable for at least some self-regulation strengths, it then must happen at intermediate ones
(SI, Sections 2.4 and 5).

One could also ask whether, by choosing very carefully which particular species self-regulate,
their fraction could be considerably lowered while still achieving stability. To test this, we searched
for the minimal value of P compatible with local stability (Figure 1, yellow lines). This was done
by choosing the identities of the self-regulating species to be the most conducive to stability via
a stochastic search algorithm (SI, Section 7.4). As seen, P is indeed reduced this way, especially
in the case of the Ecopath webs, where it drops to about 20-30% of the species. In the case of the
well-resolved webs, P reduces only to about 80% of all species, which is still a large majority. That
is, there is no way of targeting particular species with self-regulation which would alleviate the need
for the majority of species to be self-regulated.

Moreover, contrary to ecological intuition, there is no obvious trophic pattern to the minimal set
of self-regulating species: it is not true that primary producers or top predators are more likely to
be included than species from other trophic levels. Instead, the self-regulating species are more or
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less uniformly distributed across trophic levels. Additionally, it is impossible to stabilize any of the
large networks by having only basal and top species self-regulate: by assigning self-regulation to all
species within these two trophic groups only, the webs turned out unstable in all cases (SI, Section
7.7).

Theoretical analysis

Despite all the different empirical food webs and parameterizations considered above leading to the
conclusion that the majority of species must be self-regulating, food web data is always incomplete
no matter how well-resolved, and any finite set of parameterizations will fall short of the infinitely
many possible ones. Furthermore, it is unclear whether food webs possess some peculiar structure
which has lead us to find this result, or if they pertain to a much wider class of networks. To answer
these questions, we conducted a theoretical analysis in two steps.

First, we considered random network ensembles such that the pairwise effects of species i on
species j and that of of j on i are drawn from a bivariate distribution with given marginal means,
marginal variances V , and correlation ρ 19–23. Using a new result in the mathematical theory of such
systems24, we show that even a handful of species lacking self-regulation are sufficient to destabilize
them (SI, Section 2). Moreover, we obtained an analytical formula for the distance of such networks
from stability using the recently proposed quaternionic resolvent method25 (SI, Sections 3-5). From
this it turns out that just two relevant quantities determine the minimum fraction of self-regulating
species P required for network stability: the correlation ρ , and the scaled strength of self-regulation
d/
√

SV where d is the self-regulation strength and S the number of species (Figure 2). The results
show that local stability is unattainable without either the majority of species strongly self-regulating,
or ρ being close to −1.

Second, real food webs have markedly nonrandom structure, and one may wonder if the above
random network results are sensitive to incorporating realistic network topology. One well-known
structural feature of real food webs is that they are close to a cascade pattern26,27: species may
be ordered such that those lower in the hierarchy may be eaten by species higher up, but not vice
versa (“big fish eat small fish”). Performing the analysis on such webs (SI, Sections 2.5 and 6), we
find the following result: Figure 2 is still valid as long as one replaces the original ρ with a new
effective correlation ρeff, and the original V with an effective variance Veff. Both ρeff and Veff can
be straightforwardly calculated using the original data. Since our results are derived in the limit
of a very large number of species, they are not well suited to analyzing the Ecopath webs, which
had only between 39 and 51 species. However, our analytical formula does predict the stability
of the well-resolved empirical networks with high accuracy (SI, Section 7.5). The accuracy is
sufficiently high not to leave much room for improvement by including further structural properties
of real food webs in the theoretical analysis. For instance, real food webs, apart from possessing an
approximate cascade structure, are also close to being interval, and have broader degree distributions
than expected by chance. Incorporating these other properties into a model is an unsolved theoretical
problem—but, since the approximation is accurate even in their absence, doing so is not expected to
yield any substantial improvement.

One question is where empirical systems tend to be located in the parameter space of Figure 2.
Previous studies17 suggest a slight but positive correlation between ρ and

√
SV , imposing a negative

correlation between the two axes of the plot. It is not yet known whether a significant relationship
is retained between ρeff and

√
SVeff though; furthermore, the empirical difficulty in determining

d means we do not know where real-world communities lie exactly. However, we calculated the
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Figure 2: The minimum fraction of self-regulating species required for stability, as a function of the average
pairwise correlation ρ and normalized self-regulation strength d/

√
SV (where d is the raw strength of self-

regulation, S is the number of species, and V is the variance of all interaction strengths excluding self-effects).
In the green shaded region the system is unstable regardless of the value of P. This theoretical map may
correspond either to elliptic random networks or networks with cascade structure (in which case the effective
parameters ρeff and Veff must be used instead of ρ and V ; see SI, Section 6). Self-effects are sampled from
a distribution equal to d with probability P and to zero with probability 1−P. Stability can only ever be
achieved for P≈ 1, except for correlation values close to −1. Note that only negative values of ρ are shown,
even though −1 ≤ ρ ≤ 1 in principle—this is because stability cannot ever be achieved for ρ > 0, except
when P is strictly equal to 1.

effective correlation ρeff for all our food webs and parameterizations. Having done so, this quantity
was never found to be lower than about −0.35. Then one can say, based on Figure 2, that a large
fraction of species must self-regulate for stability, regardless of the particular value of d/

√
SVeff.

This is consistent with our results from analyzing the empirical webs.

Discussion

Our two main results are an analytical method for predicting the stability properties of large
ecological networks with high accuracy, and the conclusion that local asymptotic stability cannot
be achieved without the majority of the diagonal entries in the community matrix being strongly
negative.

In light of this, it would seem that even the most ardent proponents of the “self-regulationist”
view2,6,7 have been overly cautious in assessing the prevalence of negative self-effects. Yodzis2

concluded, based on an analysis of relatively low-resolution food webs, that “it appears that at
least one-tenth and perhaps as much as one-half of the consumer species [in these communities]
need to exhibit some degree of intraspecific interference if the equilibrium viewpoint is to apply”.
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Sterner et al.6, after finding it difficult to stabilize small ecological networks without widespread
self-regulation, state that “in the absence of sufficient data on the prevalence of self-damping in
different trophic levels, it seems best to allow for self-damping in all trophic levels in community
models”—with the fraction of species having to self-regulate at each level being left as an open
question. The closest it comes to the results expounded here can be found in an almost off-hand
remark by Moore and de Ruiter7, who state that “arguably, most, if not all, populations are subject to
intraspecific competition and self-regulation to some degree” (p. 36). Based on the results presented
here, at least half and possibly more than 90% of species must be subject to self-regulation to a
substantial degree.

It is important to emphasize what our results do not say. First, they do not imply that a large
P means all species have an equally high probability of self-regulation. For instance, if all basal
species self-regulate, then reaching the required fraction of self-regulating species is in principle
possible with species at higher trophic levels having a lower frequency of self-regulation: if a
fraction P = 0.7 of 100 species need to be self-regulating but half of the species are basal, then
only 40% of consumers may need self-regulation. Second, they do not imply that intraspecific
aggression, cannibalism, or other forms of direct interference are overwhelmingly important in
stabilizing communities. As pointed out earlier, self-regulatory terms may appear in the community
matrix via indirect mechanisms such as time scale separation between consumers and their resources,
nonlinear functional responses, or spatial dynamics. Since our treatment of self-regulation was
phenomenological, one cannot say what mechanism brought about the self-regulatory terms. All
we can say is that something must be providing them if the system is to be stable. In fact, this
is in line with several recent empirical studies of coexistence which have found not only that
intraspecific effects are ubiquitous, but also that their magnitude is overwhelmingly larger than
those of the interspecific ones28–32. As these studies are phenomenological, they say nothing about
the mechanisms behind this pattern. Let us therefore reflect on some of the possibilities for where
self-effects may originate from.

Direct self-regulation via predator interference or cannibalism are, in a sense, the simplest
candidate mechanisms from a conceptual point of view. The only problem is that we do not know
how important they are—though it has been argued that predator interference is quite common
in nature14,16. Cannibalism is often important in marine systems, and cannibalism may act in a
self-regulatory way under many circumstances (exceptions include the case when the fraction of
individuals consumed is proportional to the total population size, or when only postreproductive
individuals are eaten).

Nonlinear functional responses can also generate self-regulatory terms; moreover, though
functional responses in nature may be more complicated than we tend to think33, one may be quite
sure that they will by and large be nonlinear. To explore their effect, we studied two different
dynamical food web models (SI, Section 8). In the first model, based on equilibrium biomass
distributions obtained from Damuth’s Law34, nonlinear functional responses were unable to stabilize
dynamics, and they did not even reduce the required fraction of directly self-regulating species
if stability was to be achieved. The allometric model of Schneider et al.35, on the other hand,
was occasionally able to produce stable, species-rich networks without any other self-regulation
mechanism. Overall, while stabilization via nonlinear functional responses is definitely a possibility,
our preliminary exploration suggests that it is not the most typical outcome.

Time scale separation between consumers and resources also results in self-regulation3, though
its importance in stabilizing community dynamics is understudied. However, it may in fact be
more important than we think. Marine plankton use resources such as light (with instantaneous
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dynamics in comparison to the planktonic life cycle), introducing self-regulatory terms in the
plankton. Planktonic dynamics is notoriously complex36, but probably none of that complexity
matters from the point of view of a whale population consuming the plankton, since whales averages
over those complexities in time and space due to their incomparably slower life cycle. Thus,
planktonic dynamics may be effectively instantaneous from the whales’ point of view, introducing
effective self-regulation in whale dynamics. In the absence of further information, however, one
cannot say how much this mechanism tends to contribute to network stability.

Finally, the fact that communities are distributed in space and are limited in their dispersal ability
can impose self-regulation on all species simultaneously, and may have a large role in stabilizing real-
world communities. This view is supported by recent theoretical findings37 based on a random matrix
perspective on multipatch dispersal. Spatial structure can stabilize dynamics via 1) the “eigenvalue
pushback effect” (the bulk of the eigenvalue distribution moves in the negative direction, very much
in analogy with what we see on Supplementary Figures 18 and 32); 2) the “Jacobian averaging effect”
(heterogeneous interaction strengths in various patches averaged over the whole metacommunity
act to reduce overall variance and thus

√
SV , leading to more stabilized communities), and 3) the

“negative feedback effect” (migration can introduce effective self-regulation). We think it is very
possible that the large and widespread negative diagonal entries in community matrices, necessary
for their stability, are provided by communities’ spatial structure. Putting it differently: were it
possible to homogenize a community and thus eliminate its spatial aspect, one would predict a severe
loss of species diversity due to the disappearance of self-regulation terms alone. Such a prediction is
in line with classic experiments38 demonstrating the stabilizing powers of spatial heterogeneity.

Apart from all the above mechanisms, there is of course an alternative interpretation of our results:
that self-regulation is not actually common and therefore real-world ecosystems are inherently locally
unstable. The question then becomes whether natural systems tend to reside at fixed point equilibria,
or perhaps Mother Nature is indeed a strange attractor39. There is some evidence that fixed point
behavior is twice as common as having limit cycles40, with examples of truly chaotic dynamics
being extremely rare36. However, future research in time series modeling may easily change these
figures—therefore, ruling out the option of local instability on the basis of this evidence may be
premature. Abandoning the idea of local asymptotic stability would of course also mean losing the
mathematical and conceptual advantages it offers, since fixed point analysis is incomparably simpler
than the study of nonequilibrium attractors.

We have analyzed two different types of empirical food webs: those based on the Ecopath
modeling framework17,18 which were already parameterized but relatively small in size, and large
food webs containing hundreds of species but which were not yet parameterized. The data required
to parameterize these webs using Ecopath is not available; we therefore resorted to parameterization
based on allometric relationships (see Methods). An advantage of these parameterizations is that
they ensure the feasibility41–43 of the system (all species having positive equilibrium abundances).
Regardless of parameterization, the qualitative pattern emerging was the same (Figure 1): a large
fraction of species must self-regulate for stability, and the greatest likelihood of stability occurs at
intermediate self-regulation strengths. But quantitatively, there was a significant difference between
the Ecopath webs and the well-resolved ones: while in the former case, “only” half the species must
self-regulate for stability, in the latter, this was closer to 90%. It is not clear at this point whether the
difference is due to the different structural properties of the Ecopath and the allometric models, or
rather simply due to the considerably lower species richness of Ecopath webs, or to a combination
of both. However, even the more conservative Ecopath prediction requires substantially strong and
widespread self-regulation for stability.
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These results are in line with our theoretical analysis. Since the analysis is quite general,
we expect the same conclusions on self-regulation to hold in any network of sufficient size and
complexity, not just ecological ones: local stability requires widespread negative self-effects.
Despite its generality, the theoretical results are of little relevance to networks where self-regulation
appears naturally for every interacting component, such as biochemical or neural networks1. Where
the source of such “natural” mechanisms is not immediately obvious (as in ecology), the results
still compel us to believe either that the overwhelming majority of all populations on this planet
experience substantial self-regulation, or else that ecosystems are in fact locally unstable. It may yet
be premature to say which is the case—but either way, we are forced to reconsider how we think
about the dynamics of large ecological communities.

Methods

For the Ecopath matrices, we used the seven largest ones parameterized by Jacquet et al.17 (Table 1).
For the well-resolved networks, we took the adjacency matrices of 12 published empirical

food webs (Table 2). We first removed all cannibalistic self-loops, and in the few cases two
species mutually preyed upon each other, we dropped one of the two feeding links at random.
Parameterization then proceeded by assuming appropriate body mass scaling allometries and type I
functional responses27,44 (see also SI, Section 7.1). Three independent parameterizations of each
web were created, with the parameter controlling the scaling between body masses and equilibrium
abundances, g, being set to either −0.55, −0.75, or −0.95.

Diagonal entries of the parameterized matrices A were set to d with probability P and to zero
with probability 1−P. The value of P was varied from 0 to 1 in steps of 1/S; i.e., the number (as
opposed to fraction) of self-regulating species always increased by one at every step. The strength
of self-regulation d was −2q times the leading eigenvalue of the matrix without any self-effects,
where q = 0.5, 1.5, 2.5, . . ., 7.5 (i.e., eight different strengths of self-regulation were implemented
for each web, measured in units of the leading eigenvalue).

For every combination of P, d, g, and food web identity, the diagonal entries were sampled
independently 1000 times. We recorded the number of cases out of these which ended up stable;
this number divided by 1000 was interpreted as the probability of achieving stability with the given
P, d, g, and food web (Figure 1).

Due to the low structural rank45 (maximum possible rank a matrix can attain assuming its
nonzero entries are arbitrary) of many of the highly resolved empirical food webs, all the above was
repeated for four different parameterizations of the webs in Table 2: 1) the original parameterized
food webs; 2) the original web plus indirect negative interactions; 3) the original web plus indirect
positive interactions; and 4) the original web plus both indirect negative and positive interactions.
The indirect interactions modify the offdiagonal entries of the community matrix, contributing to
them via apparent competition and indirect mutualisms. Indirect positive interactions were assigned
to species sharing a common consumer, while indirect negative interactions were assigned to those
sharing a common resource. Their strengths were drawn uniformly between zero and the mean
positive (negative) direct interaction strength, divided by a factor f . This factor in turn assumed the
values 2, 5, and 10; all simulations were repeated for all three values of f . Results proved insensitive
both to the value of f and to whether indirect effects were present at all (SI, Section 7.3).

To find the minimal P compatible with stability (Figure 1b, yellow line), we took our param-
eterized food webs, and starting with P ≈ 1 tried to find an arrangement of the diagonal entries
such that the network was stable. We did this by minimizing the leading eigenvalue via a stochastic
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search algorithm (SI, Section 7.4) and stopping the moment a stable solution was found. At that
point, P was reduced and the above repeated. We did this until at least one hundred independent
runs of the hill climbing and five independent runs of the genetic search algorithm failed to find a
stable configuration. The smallest P where a stable configuration was found was then taken to be
the minimum fraction of self-regulating species necessary for stability. We have performed this
on each Ecopath web in Table 1, and all parameterizations of the Flensburg Fjord46, Little Rock
Lake47, Otago Harbour48, and Serengeti49 food webs in Table 2 (see Supplementary Figures 21, 23,
25, and 29 for the results).

The analytical calculation used to obtain Figure 2 is described in detail in the SI (Sections 3-6).
The dynamical models studying self-regulation generated by nonlinear functional responses are
described in the SI, Section 8.

Data and code availability

All code and data used in this study are available at https://github.com/dysordys/diagonal.
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1 Preliminaries

1.1 Dynamical framework

We assume there are S interacting species in an ecological community. The dynamics of the species
densities n1, . . . ,nS are determined by some unspecified system of ordinary differential equations:

dni(t)
dt

= fi(n1(t), . . . ,nS(t);κ1, . . . ,κL) (i = 1, . . . ,S), (1.1)

where the fi(·) are functions of the densities and model parameters κ1, . . . ,κL. We assume there is a
fixed point n∗1, . . . ,n

∗
S > 0 such that

fi(n∗1, . . . ,n
∗
S;κ1, . . . ,κL) = 0 (1.2)

for some values of the parameters. Linearizing around this fixed point and defining

Ai j =
∂ fi

∂n j

∣∣∣∣
n1=n∗1,...,nS=n∗S

, (1.3)

we can write the dynamics of small deviations xi(t) from n∗i as

dxi(t)
dt
≈

S

∑
j=1

Ai jx j(t), (1.4)

or, in matrix notation, as
dx(t)

dt
≈ Ax(t). (1.5)

We call the matrix A, which is the Jacobian evaluated at equilibrium, the community matrix. The
solution to Eq. 1.5 can be written explicitly:

x(t) = Exp(At)x(0), (1.6)

where Exp(At) is obtained by substituting the matrix At into the Taylor series of the exponential
function.

Let the eigenvalues of A be λ1, . . . ,λS. The spectral density function of A is defined as

w(z) =
1
S

S

∑
i=1

δ (λi− z), (1.7)

where z ∈ C, and δ (·) is the Dirac delta function. More generally, one can define the expected
spectral distribution of an ensemble of matrices as

w(z) = E(δ (λi− z)), (1.8)

where E(·) denotes expectation. The spectral density gives a complete description of where the
eigenvalues of A are expected to lie in the complex plane.

Local stability of the equilibrium n∗ = (n∗1, . . . ,n
∗
S) depends on the spectral abscissa η(A) of A:

η(A) = sup{Re(z) : z ∈ support(w)}, (1.9)

where sup(·) means supremum. As long as η(A) < 0, the system is locally stable (small pertur-
bations of the densities away from n∗ eventually decay); otherwise, it is unstable. This condition
means that all eigenvalues must have negative real parts for stability.
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1.2 Self-regulation

This work is concerned with the role of self-regulation in stabilizing community matrices. The
classical definition for self-regulation is that it is a direct negative dependence of species i’s per
capita growth rate on its own density. The per capita population growth rate of species i is defined as

ri =
1
ni

dni

dt
. (1.10)

From this and Eq. 1.1, it follows that fi = niri.
The community matrix can be written in terms of the per capita growth rate. Using Eq. 1.3 and

fi = niri, we write

Ai j =
∂ fi

∂n j

∣∣∣∣
n1=n∗1,...,nS=n∗S

=
∂ (niri)

∂n j

∣∣∣∣
n1=n∗1,...,nS=n∗S

=

[
δi jri +ni

∂ ri

∂n j

]
n1=n∗1,...,nS=n∗S

, (1.11)

where δi j is the Kronecker symbol (equal to 1 for i = j and to 0 otherwise). Assuming a feasible
community with all n∗i > 0, the ri are zero at equilibrium, and so we have

Ai j = n∗i
∂ ri

∂n j

∣∣∣∣
n1=n∗1,...,nS=n∗S

. (1.12)

For positive n∗i , Aii is nonzero precisely when ri has direct dependence on ni, and describes self-
regulation whenever this dependence is negative around the equilibrium point. We therefore conclude
that negative diagonal entries of the community matrix correspond to self-regulation. We will stick
to this broad definition of self-regulation until Section 8, where we will examine a narrower version
of the concept.

A system completely devoid of self-regulation has Aii = 0 for all i. Such a system cannot be
locally stable, because the trace of a matrix is also the sum of its eigenvalues, and since this sum is
now zero, η(A)≥ 0.

Adding a constant diagonal matrix dI (where I is the identity matrix) to A corresponds to each
species being self-regulated at the exact same strength. The eigenvalues of A are then simply
shifted in the complex plane by d. This is because the eigenvalues λ of A satisfy the characteristic
equation 0 = det(A−λ I), while the eigenvalues λ ′ of A+ dI satisfy the characteristic equation
0 = det(A + dI− λ ′I) = det(A− (λ ′ − d)I). Comparing the two expressions, λ = λ ′ − d, or
λ ′ = λ +d. Therefore, if λ is an eigenvalue of A, then λ +d is an eigenvalue of A+dI. It follows
that any A can be stabilized by adding sufficiently strong simultaneous self-regulation to all species,
i.e., by adding dI to A with d being less than −η(A).

In case the diagonal entries of A are nonzero but not constant either, the eigenvalues acquire
more spread along the real axis by having greater diagonal variance. Indeed, the variance V(λ ) of
the eigenvalues of any S×S matrix A reads

V(λ ) = E(λ 2)−E2(λ ) =
trace(A2)

S
−
(

trace(A)

S

)2

=
1
S

S

∑
i=1

S

∑
j=1

Ai jA ji−

(
1
S

S

∑
i=1

Aii

)2

=
1
S

S

∑
i=1

S

∑
j 6=i

Ai jA ji +
1
S

S

∑
i=1

A2
ii−

(
1
S

S

∑
i=1

Aii

)2

=
1
S

S

∑
i=1

S

∑
j 6=i

Ai jA ji +V(Aii)

(1.13)

(Jorgensen et al. 2000). Thus increasing the variance of the diagonal entries increases the variance
of the eigenvalues. Furthermore, since for matrices with real entries V(λ ) =V(Re(λ ))−V(Im(λ )),
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increasing diagonal variance must act to increase eigenvalue variance in the real direction, possibly
destabilizing the system. That is, for a given mean diagonal (strength of self-regulation), a smaller
variance of the diagonal entries generally results in a more stabilized configuration.

1.3 Elliptic matrices

Let M be an S×S matrix, with diagonal entries Mii zero, and pairs of entries (Mi j,M ji) indepen-
dently sampled from a bivariate distribution with zero marginal means, marginal variances V , and
correlation ρ . This leads to E(Mi j) = 0, E(M2

i j) = V , and E(Mi jM ji) = V ρ . When S is large,
matrices constructed in this way are called large elliptic random matrices (O’Rourke and Renfrew
2014); here we will call them elliptic matrices for short. Rescaling the matrix by dividing each entry
with

√
SV leads to E(Mi j) = 0, E(M2

i j) = 1/S, and E(Mi jM ji) = ρ/S; these matrices are called
standard elliptic matrices.

According to the elliptic law (Sommers et al. 1998, Allesina and Tang 2012, Tang et al. 2014,
O’Rourke and Renfrew 2014, Allesina and Tang 2015, Allesina et al. 2015), when S→ ∞, the
eigenvalues of standard elliptic matrices are uniformly distributed in an ellipse in the complex plane
centered at zero, with horizontal semiaxis 1+ρ and vertical semiaxis 1−ρ . The most important
aspect of this theorem is its universality: as long as all moments of the bivariate distribution are
finite, one obtains the same spectral distribution, regardless of the bivariate probability distribution’s
shape. The elliptic law also recovers, as a special case, Wigner’s semicircle law for the spectral
distribution of symmetric matrices, obtained when ρ = 1.

Random matrix theorems are derived using standard elliptic matrices in the S → ∞ limit.
Approximations for finite S can be obtained by applying the results for standard elliptic matrices,
and then simply rescaling by

√
SV . For instance, the eigenvalues of finite-size, non-standard

elliptic matrices are uniformly distributed in an ellipse centered at zero in the complex plane, with
horizontal/vertical semiaxes approximately equal to

√
SV (1±ρ) instead of 1±ρ . (Supplementary

Figure 1). Naturally, the larger S is, the better the approximation will work in practice.

2 Low-rank perturbations of elliptic matrices

Let M be a standard elliptic matrix and D be a low-rank S× S matrix, i.e., one with k nonzero
eigenvalues, S− k zero eigenvalues, and k� S. Let us number the eigenvalues λi(D) of D such that
λi(D) 6= 0 for i = 1, . . . ,k and λi(D) = 0 for i = k+1, . . . ,S. We are interested in the eigenvalues
λi(A) of A = M+D. The low-rank perturbation theorem for elliptic matrices (O’Rourke and
Renfrew 2014) states that in the S→ ∞ limit, the eigenvalues are still distributed in an ellipse with
horizontal/vertical semiaxes 1±ρ , except for at most k eigenvalues. These k eigenvalues λi(D)
(i = 1, . . . ,k) affect the eigenvalues λi(A) in the following way:

λi(A) =


unaffected if |λi(D)| ≤ 1,

λi(D)+
ρ

λi(D)
+o(1) if |λi(D)|> 1

(2.1)

(we used the standard order notation; further technical conditions of the theorem are found in
O’Rourke and Renfrew 2014). For large but finite S and elliptic matrices that are not standardized,
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Supplementary Figure 1: Eigenvalues (yellow points) of an elliptic matrix with S = 500, V = 1, and
ρ =−1/2 (left). Normalizing its entries by

√
SV , one obtains a standard elliptic matrix and its eigenvalues

(right). Since ρ =−1/2, the horizontal/vertical semiaxes 1±ρ of the standard elliptic matrix are 1/2 and
3/2, respectively. This is clearly seen on the right panel. The eigenvalue distribution in the left panel is the
same, except both the real and imaginary axes are rescaled by

√
SV =

√
500≈ 22.36. The horizontal and

vertical semiaxes are therefore approximately equal to
√

SV (1+ρ)≈ 11.18 and
√

SV (1−ρ)≈ 33.54.

Eq. 2.1 may be used as

λi(A)≈


unaffected if |λi(D)| ≤

√
SV ,

λi(D)+
ρSV
λi(D)

if |λi(D)|>
√

SV .
(2.2)

Supplementary Figure 2 shows an example of the effect a low-rank perturbation has on the spectrum
of an elliptic matrix. The perturbing matrix has rank three; the outlier eigenvalues’ positions are
accurately predicted by Eq. 2.2.

2.1 Elliptic matrices with nonzero mean

One very important application of the low-rank perturbation theorem is in calculating the spectra of
random matrices whose entries are sampled from a distribution with nonzero mean (O’Rourke and
Renfrew 2014). Let M be an S×S random matrix with E(Mi j) = µ , E(M2

i j) =V , and E(Mi jM ji) = ρ .
Let E be the S×S matrix with each entry equal to 1; E is a rank-one matrix. First, let us write M as

M = (M−µE+µI)+µE−µI. (2.3)

The expression in parentheses is now an elliptic matrix, its eigenvalues falling uniformly in an ellipse
with horizontal/vertical semiaxes

√
SV (1±ρ) in the complex plane (we first subtract off the mean,

but in the process modify the diagonal; the µI term restores it to zero). Outside the parentheses,
the µE term is a rank-one perturbation: S−1 of its eigenvalues are zero, and a single eigenvalue is
equal to Sµ . By Eq. 2.2, the effect of this matrix is to modify a single eigenvalue, which now will
approximately be equal to Sµ +ρSV/(Sµ) = Sµ +ρV/µ (but only if |Sµ|>

√
SV , or, equivalently,

|µ|>
√

V/S). Finally, the effect of −µI is to shift the whole spectrum by subtracting µ from each
eigenvalue, so that S−1 eigenvalues fall in an ellipse with horizontal/vertical semiaxes

√
SV (1±ρ)
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centered at −µ +0i in the complex plane, and there is a single outlier whose position is given by
(S−1)µ +ρV/µ (Supplementary Figure 3, left panel).
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Supplementary Figure 2: Left: spectrum of elliptic matrix M with S = 500, V = 1, and ρ =−1/2 (yellow
points). Center: spectrum of a rank-three 500×500 matrix D with the three nonzero eigenvalues equal to 30,
−30+15i, and −30−15i. Right: spectrum of A = M+D. The predicted effect of the perturbations from
Eq. 2.2 (blue circles) matches the numerical results.
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Supplementary Figure 3: Left: Spectrum of elliptic matrix (yellow points) with S = 500, V = 1, ρ =−1/4,
and µ =−1/10, i.e., its entries have nonzero mean. Equivalently, the matrix can be decomposed via Eq. 2.3,
with D = µE. The outlier’s predicted position is (S−1)µ +ρV/µ =−47.4 (blue circle). Right: the same
elliptic matrix but with µ = 0, and 10 species out of the 500 being self-regulated (yellow points). Blue circles
show the predicted positions of the perturbed values based on the low-rank perturbation formula Eq. 2.2.
Clearly, the system cannot be stabilized by just a few species exhibiting self-regulation.
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2.2 No stabilization when only a few species self-regulate

Since the diagonal entries of any elliptic matrix M are all zero, no species are self-regulating.
Self-regulation can be introduced via A = M+D, where D is the diagonal matrix

D =


d1 0 0 · · ·
0 d2 0 · · ·
0 0 d3 · · ·
...

...
...

. . . .

 (2.4)

In case only k� S of the di are nonzero, D is a low-rank perturbation to M with rank k. The spectral
distribution of A is therefore given by the ellipse defined by M, plus at most k outliers. Since the
spectral abscissa η(A) is still approximately

√
SV (1+ρ)> 0, the matrix cannot be stabilized by

just a few species self-regulating (Supplementary Figure 3, right panel).
Similar results hold when E(Mi j) = µ 6= 0. For simplicity, assume only one species is self-

regulating. As discussed above, an elliptic matrix with nonzero mean can be thought of as a standard
elliptic matrix plus a rank-one perturbation µE, where E is the matrix of all ones. Adding self-
regulation to one single species means that D is now a matrix of all zeros except for D11 = d (we
choose the self-regulating species to be species 1 without loss of generality, since M is a random
matrix whose rows have identical statistical properties in the large S limit). Decomposing M as in
Eq. 2.3, A is an elliptic matrix shifted by −µI plus the perturbation µE+D, which reads

µE+D =


µ +d µ µ · · ·

µ µ µ · · ·
µ µ µ · · ·
...

...
...

. . .

. (2.5)

This is a rank-two matrix, so all but two eigenvalues are zero. The eigenvectors belonging to the
nonzero eigenvalues must have the structure (u, v, v, . . . , v). Writing out the eigenvalue equation as

µ +d µ µ · · ·
µ µ µ · · ·
µ µ µ · · ·
...

...
...

. . .




u
v
v
...

= λ


u
v
v
...

, (2.6)

we get
(µ +d)u+(S−1)µv = λu, µu+(S−1)µv = λv. (2.7)

Using the inherent freedom in choosing eigenvector components, we may fix v = 1. We then have

(µ +d)u+(S−1)µ = λu, µu+(S−1)µ = λ . (2.8)

The two solutions for λ yield the nonzero eigenvalues:

λ± =
Sµ +d

2
±

√(
Sµ

2

)2

− S−2
2

µd +

(
d
2

)2

. (2.9)

Adding self-regulation to a single species when µ 6= 0 is therefore equivalent to adding a rank-two
perturbation to an elliptic matrix. Again, since only two eigenvalues are affected, stability cannot be
achieved, regardless of how strongly the species is self-regulating.

More generally, if k� S species self-regulate, the low-rank perturbation affects k+1 which is
still insufficient to alter the matrix’s stability properties (Supplementary Figure 4).
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Supplementary Figure 4: Spectra of matrices A = M+D, where M is a random matrix with S = 500,
µ =−1/10, V = 1, and ρ =−1/4. On the left, D is a matrix of all zeros except for D11 =−30; on the right,
the first five diagonal entries of D are uniformly and independently sampled from [−50, −30]. Since the
random matrices have nonzero mean, the number of outliers is 2 on the left and 6 on the right; their positions
are predicted by the low-rank perturbation formula Eq. 2.2 (blue circles). On the left, the values are given
more specifically by Eq. 2.9.

2.3 A handful of non-self-regulating species are sufficient to destabilize

We can approach the same problem from the opposite end: suppose all but k� S species are self-
regulated. For simplicity, assume the strength of self-regulation, d, is the same for all self-regulating
species (this restriction is relaxed in subsequent sections). Such a matrix can be written

A = M+dI+D, (2.10)

where M is elliptic, and D is given by Eq. 2.4 with di = −d for k of the S diagonal entries, and
di = 0 otherwise. The role of D is to offset the effect of dI for the k non-self-regulating species.
Since k� S, we can once again apply the low-rank perturbation theorem to obtain the spectrum of
M+D, which then gets shifted by d due to the effect of dI (Section 1.2). Using Eq. 2.2, the outlier
eigenvalues’ positions are now

λi(A)≈ λi(D)︸ ︷︷ ︸
−d

+
ρSV
λi(D)︸ ︷︷ ︸
−d

+d =−ρSV
d

=
ρSV
|d|

. (2.11)

In the last step, we used d < 0, which must be the case if the species self-regulate as opposed to
self-enhance.

A consequence of Eq. 2.11 is that, for ρ ≥ 0, even a single species without self-regulation
destabilizes the system. For ρ < 0, the system will be stable. However, stripping self-regulation
from a few more species will lead to destabilization (Supplementary Figure 5). Extending this
analysis to the case of matrices with nonzero mean is a straightforward exercise that does not alter
the results (Supplementary Figure 6).

One may wonder whether a single eigenvalue crossing the imaginary axis is of much biological
importance. If this corresponds to a transcritical bifurcation whereby a few species go extinct, the
rest of the system may still be functional. This, however, is not the case here. Assume all but
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Supplementary Figure 5: Spectrum of elliptic matrices with S = 500 and V = 1, when all but a handful of
species are self-regulated. Left: random matrix with ρ = 0. Lifting self-regulation from even a single species
destabilizes the system. Center: for a random matrix with ρ =−1/4, lifting self-regulation from a single
species does not yet destabilize. Right: doing so with k = 15 species does destabilize.
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Supplementary Figure 6: Spectrum of elliptic matrices with S = 500, µ =−0.1, V = 1, ρ =−0.25, and
with all species self-regulating (with d =−30), except for one (left) and fifteen (right) species. The results
are the same as in Supplementary Figure 5; the only difference is the extra negative outlier eigenvalue due to
the matrix having a negative mean.

one species are strongly self-regulated; the interaction matrix A is then given by Eq. 2.10 with D
all zeros except for D11 =−d. If self-regulation is strong, then, to a first-order approximation, D
determines the eigenvalues and eigenvectors of A, to which M contributes a perturbation that can
be evaluated using regular eigenvalue perturbation theory (e.g., Caswell 2001, chapter 9). The dI
term then shifts the eigenvalues by d but leaves the eigenvectors unaffected. The eigenvector of D
belonging to the nonzero eigenvalue −d is (1, 0, 0, . . . , 0). The perturbing effect of M contributes
a relatively small change to this vector; that is, it will still be true that the eigenvector is localized on
species 1. Then, if the eigenvalue belonging to this highly localized eigenvector, given by Eq. 2.11,
is positive, this means that the one species will experience unrestricted growth, driving all other
species towards extinction. Naturally, since the dynamics described by A is only valid in the vicinity
of an equilibrium point (Section 1.1), this instability will generally result in the system settling on
some alternative stable state, one where species 1 is at high abundance and the other species are
either extinct or at low abundance. Biologically, lifting the burden of strong self regulation from one
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single species gives it such a huge competitive advantage that it may become the single dominant
species. Therefore, even a single eigenvalue crossing over to the right half plane has a catastrophic
effect on the system as a whole.

2.4 For negative correlation, increasing the strength of self-regulation can be de-
stabilizing

The scenario above, when only a handful of species are free of self-regulation, leads to an interesting
and counterintuitive result for ρ < 0. In that case the spectral abscissa η(A), defined by Eq. 1.9,
changes nonmonotonically as the strength of self-regulation d increases. Supplementary Figure 7
(left panel) shows an example where ρ =−3/4 and only one species lacks self-regulation: as |d|
gets larger, η(A) first decreases; then, after a critical point, it starts to increase again.
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Supplementary Figure 7: The spectral abscissa η(A) of A = M+dI+D as a function of d < 0, where I is
the identity matrix, D is a matrix of all zeros except for D11 =−d, and M is an elliptic matrix with S = 500,
V = 1, and ρ = −3/4 (left) or ρ = 1/4 (right). For negative values of ρ (left), increasing the strength of
self-regulation by making d more negative eventually has a destabilizing effect on the system. The same does
not hold for ρ ≥ 0 (right).

The mathematical reason for this is clear. For |d|<
√

SV (weak self-regulation), the nonzero
eigenvalue −d of the perturbing matrix is too small to have an effect on the spectrum of the original
elliptic matrix by Eq. 2.2. Then, η(A) =

√
SV (1+ρ)+d is simply the rightmost point of the ellipse.

However, when |d| exceeds
√

SV , the outlier will be given by Eq. 2.11. For ρ < 0, this expression
is an increasing function of |d|, leading to the seemingly paradoxical result that imposing more
self-regulation works in the direction of destabilizing the system.

It is possible to give an intuitive, though not very rigorous, interpretation to this phenomenon.
For d ≈ 0 (very weak self-regulation), the system as a whole cannot be stabilized to begin with,
as even in the case when all species are self-regulated, d would need to be at least −

√
SV (1+ρ)

for stability. For d very large on the other hand, lifting the burden of self-regulation from just
a single species will give that species such a big advantage that it effectively destabilizes the
system (Section 2.3). Therefore, under parameterizations which favor stability at least under some
circumstances, the most stabilized configuration must be achieved for intermediate values of d. Such
a parameterization is provided by ρ < 0 but not ρ ≥ 0, which instead leads to a monotonic decrease
of η(A) as −d increases (Supplementary Figure 7, right panel).



Self-regulation and the stability of large ecological networks Page 26

One could call this phenomenon, somewhat provocatively, the “intermediate self-regulation
hypothesis”: the most stabilized communities occur at intermediate values of self-interaction
strengths. This is a recurring theme not particular to the case examined here: it is a general
phenomenon that holds as long as ρ < 0 and there is even a single species whose self-regulation is
sufficiently weak (see subsequent sections).

2.5 Generating cascade structures via low-rank perturbations of elliptic matrices

Empirical food webs differ from elliptic matrices in important structural ways: they have broader
degree distributions, are almost interval, and have an approximate cascade structure (Cohen et al.
1990)—i.e., species can be ordered such that species lower in the hierarchy have zero probability of
eating those higher, while higher species have some nonzero probability of consuming lower ones.
This latter property can be taken into account by constructing the community matrix A as a sum of
two parts, a deterministic part H and a random part Q (Allesina et al. 2015):

A = H+Q. (2.12)

The deterministic part contains the effect of mean interaction strengths, which differ between the
upper and lower triangular parts of the matrix:

H =


0 µU µU · · ·

µL 0 µU · · ·
µL µL 0 · · ·
...

...
...

. . .

, (2.13)

where µU < 0 is the average effect of predators on prey, and µL > 0 is the average effect of prey on
predators. The eigenvalues of this matrix are

λk =−µU +
µL−µU

(µL/µU)
1
S eiθk −1

, (2.14)

which lie on the circumference of a circle in the complex plane with center cH and radius rH

cH =
µL− (−µL/µU)

2/S
µU

(−µL/µU)
2/S−1

+0i, rH =

∣∣∣∣∣(µU−µL)(−µL/µU)
1/S

(−µL/µU)
2/S−1

∣∣∣∣∣. (2.15)

(Allesina et al. 2015). Most of the eigenvalues are very close to zero, with only a few being
appreciably different (Supplementary Figure 8). The matrix H may therefore be thought of as a
low-rank matrix plus a small perturbation, one that is negligible for the purposes of applications
here.

The matrix Q has zero diagonal, zero mean, variance σ2
U for the upper triangular entries, and

σ2
L for the lower triangular ones. The correlation between the (i, j)th and ( j, i)th entries is given

by ρUL. Its eigenvalues are uniformly distributed in an ellipse with horizontal/vertical semiaxes√
SVeff(1±ρeff), where Veff and ρeff are the variance and average pairwise correlation of an elliptic

matrix whose spectrum would be exactly identical to that of Q. Using the results in Allesina et al.
(2015), these quantities can be expressed as the solution to

SVeff(1±ρeff)
2 = a±bρUL + cρ

2
UL, (2.16)
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Supplementary Figure 8: Eigenvalues (yellow points) of the matrix H given by Eq. 2.13, with S = 500,
µL = 1/1000, and µU = −1. The eigenvalues fall on the circumference of the blue circle with center and
radius given by Eq. 2.15. All but a handful of eigenvalues are very close to zero, making this matrix effectively
low-rank.

where

a = S
σ2

L−σ2
U

log
(
σ2

L/σ2
U

) , b = 2(S−1)σLσU, c =
(S−1)2σ2

Lσ2
U log

(
σ2

L/σ2
U
)

S
(
σ2

L−σ2
U

) . (2.17)

From this, Veff and ρeff can be obtained:

Veff =
a+ cρ2

UL +

√(
a+ cρ2

UL

)2−b2ρ2
UL

2S
, (2.18)

ρeff =
a+ cρ2

UL−
√(

a+ cρ2
UL

)2−b2ρ2
UL

bρUL
. (2.19)

(There is another root to Eq. 2.16, but it always gives a |ρeff| greater than one.) This means that Q
has the same spectral distribution as another, much simpler matrix MQ, which is an elliptic matrix
with E(Mi j) = 0, E(M2

i j) =Veff, and E(Mi jM ji) = ρeffVeff. The subscript emphasizes that MQ is the
elliptic matrix associated to Q. For µL = µU = 0 and σL = µU, the effective parameters Veff and ρeff
reduce to the original V and ρ in the large S limit.

The spectrum of A is thus identical to the spectrum of H+MQ. Since MQ is elliptic and H
is low-rank, the low-rank perturbation formula Eq. 2.2 can be used to predict the eigenvalues of
A. Supplementary Figure 9 shows how the full spectrum of a matrix with cascade structure is
constructed from the spectrum of the effective elliptic matrix MQ, plus the low-rank perturbation H.

The matrix thus generated has zero along the diagonal. It would be tempting to consider
A = MQ +H+D and apply yet another low-rank perturbation via D to the low-rank perturbed
elliptic matrix MQ +H. This cannot be done in general: the low-rank theorem applies strictly to
elliptic matrices, not low-rank perturbed ones. Instead, the sum H+D has to be regarded as the
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Supplementary Figure 9: Spectrum of community matrix A=MQ+H with cascade structure, with S = 500,
µL = −3/2, µU = 1/10, σL = 3/2, σU = 1, and ρUL = −1/4. Yellow dots are the eigenvalues of A. Red
circles are eigenvalues of the effective elliptic matrix MQ, and blue circles predict the positions of eigenvalues
following the low-rank perturbation imposed by H, given by Eq. 2.13. This demonstrates that the spectrum of
a matrix possessing the cascade structure can be thought of as an (effective) elliptic matrix plus a low-rank
perturbation.

(total) perturbation, to which the low-rank theorem is applicable provided that the sum is indeed low
rank. Since the sum of two low-rank matrices may be of any rank, there is no guarantee that the
theorem can be applied. Fortunately however, the matrix

H+D =


d1 µU µU · · ·
µL d2 µU · · ·
µL µL 0 · · ·
...

...
...

. . .

 (2.20)

is still effectively low rank as long as only a minority of the diagonal entries are nonzero (Sup-
plementary Figure 10). Then MQ can be low-rank perturbed using this matrix sum. The same
arguments therefore apply as before: having just a few species self-regulating cannot stabilize a
food web following a cascade structure, and a handful of non-self-regulating species are sufficient
to destabilize it.
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Supplementary Figure 10: Behavior of the spectrum (yellow points) of the matrix H+D, given by Eq. 2.20.
Parameters are S = 500, µL = 0.05, µU =−1, and diagonal entries are randomly sampled to be either −30
with probability P or 0 with probability 1−P. The probability of self-regulation is P = 0.01 (left), P = 0.1
(center), and P = 0.9 (right). In all cases the effect of the diagonal entries is mostly decoupled from those
of the offdiagonal ones. Due to this special property of H+D, one may indeed think of a cascade matrix
with self-regulation as a low-rank perturbed elliptic matrix, plus another low-rank perturbation pertaining to
self-regulation.

3 Quaternions

Let a,b ∈ R. By introducing the imaginary unit i with the property i2 = −1, a complex number
z ∈ C can be written as z = a+bi. In analogy with this construction, one may define two further
symbols j and k, with the following multiplication properties:

i2 = j2 = k2 = ijk =−1, ij = k, ji =−k, jk = i, kj =−i, ki = j, ik =−j. (3.1)

If now a,b,c,d ∈ R, we can form the following quadruplet, called a quaternion:

q = a+bi+ cj+dk. (3.2)

The set of quaternions is denoted H, in honor of Sir William Rowan Hamilton, who first introduced
them and studied their properties in the mid-19th century.

A more convenient way of writing quaternions is provided by using ij = k in Eq. 3.1. Then any
quaternion q ∈H can be written

q = a+bi+ cj+dk = a+bi+ cj+dij = (a+bi)+(c+di)j = z+uj, (3.3)

where we have introduced the two complex numbers z = a+bi and u = c+di. Using this equiv-
alent form of quaternions, we can introduce the two basic algebraic operations of addition and
multiplication.

Addition of two quaternions q1 = z1 +u1j and q2 = z2 +u2j simply follows

q1 +q2 = (z1 +u1j)+(z2 +u2j) = (z1 + z2)+(u1 +u2)j, (3.4)

the sum also being a quaternion. Multiplication is a little more subtle. Unlike for real or complex
numbers, quaternion multiplication is not commutative: q1q2 is in general not equal to q2q1. For
example, let z = a+bi with a,b ∈ R. Then,

zj = (a+bi)j = aj+bk, (3.5)
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but
jz = j(a+bi) = aj−bk, (3.6)

where ij = k and ji = −k were used from Eq. 3.1. Therefore, zj = jz̄, where the overbar denotes
complex conjugation. We can now write the general multiplication rule:

(z1 +u1j)(z2 +u2j) = z1z2 + z1u2j+u1jz2 +u1ju2j = z1z2 + z1u2j+u1z̄2j+u1ū2j2, (3.7)

which, using j2 =−1 from Eq. 3.1, reads

(z1 +u1j)(z2 +u2j) = (z1z2−u1w̄2)+(z1u2 +u1z̄2)j. (3.8)

The product is itself a quaternion. Both addition and multiplication are therefore closed operations
which do not lead out of the original quaternionic set.

In analogy with complex conjugation, one can introduce the conjugate q̄ of a quaternion q.
Writing q as q = a+bi+ cj+dk = z+uj, we have

q̄ = a−bi− cj−dk = z̄−uj. (3.9)

The product qq̄ is the squared norm |q|2 of the quaternion, which is real, nonnegative, and zero if
and only if q = 0:

|q|2 = qq̄ = (z+uj)(z̄−uj) = zz̄− zuj+ujz̄−ujuj = zz̄− zuj+uzj−uūj2

= zz̄+uū = |z|2 + |u|2.
(3.10)

It is easy to show that qq̄ = q̄q, therefore the order of multiplication, in this case, does not matter.
Indeed,

|q|2 = q̄q = (z̄−uj)(z+uj) = z̄z+ z̄uj−ujz−uūj2 = z̄z+uū = |z|2 + |u|2, (3.11)

which is the same as before.
Let q ∈H be nonzero. The inverse q−1 of q is, by definition, the quaternion such that q−1q = 1.

Note that, although multiplication is noncommutative, the inverse is always unique: qq−1 = q−1q= 1.
Indeed, were we to introduce a “right-inverse” q−1

R such that qq−1
R = 1, and a “left-inverse” q−1

L
such that q−1

L q = 1, we would have qq−1
R = q−1

L q, and after multiplying by q−1
R from the right, we

have (qq−1
R )q−1

R = q−1
L (qq−1

R ), showing that q−1
R = q−1

L . To calculate the inverse, one can rely on
the conjugate, just as in the case of complex numbers:

q−1 =
q̄
|q|2

=
q̄
qq̄

=
z̄−uj
|z|2 + |u|2

. (3.12)

Multiplying this with q, we get 1, therefore the above expression is indeed the inverse of q. The
inverse is itself a quaternion: for any nonzero q ∈ H, we have q−1 ∈ H, as seen from the above
formula.

Finally, we introduce the following notation for future convenience. Let q1 = z1 + u1j and
q2 = z2 +u2j be two quaternions. Their entrywise product q1 ◦q2 is, by definition,

q1 ◦q2 = (z1 +u1j)◦ (z2 +u2j) = z1z2 +u1u2j. (3.13)
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4 The method of quaternionic resolvents

4.1 Spectral density and the resolvent for symmetric matrices

Let M be a symmetric S× S matrix with spectral density w(x); due to symmetry, x ∈ R. One
disadvantage of the function w(x) is that it is difficult to use for direct calculations. A much more
wieldy object, the resolvent, can be defined via

G(z) =
∫
R

w(x′)
x′− z

dx′. (4.1)

The above integral has pole singularities at the eigenvalues, where the denominator becomes zero.
This problem is circumvented by allowing z to be complex, and considering the resolvent as a
function of z∈C. Knowing the resolvent, the spectral distribution can be recovered with the formula

w(x) =− 1
π

lim
ε→0+

Im(G(x+ εi)), (4.2)

where ε approaches zero from positive values and Im(·) denotes the imaginary part.
It is easy to show that this equation holds. By Eq. 1.7 the spectral distribution of any given

matrix is a sum of Dirac deltas. One way of defining the Dirac delta function is

δ (x) =
1
π

lim
ε→0+

ε

x2 + ε2 . (4.3)

But the fraction above can also be written as Im(1/(x− εi)). Indeed,

Im
(

1
x− εi

)
= Im

(
x+ εi

(x− εi)(x+ εi)

)
= Im

(
x+ εi

x2 + ε2

)
=

ε

x2 + ε2 . (4.4)

Therefore,

δ (x) =
1
π

lim
ε→0+

ε

x2 + ε2 =
1
π

lim
ε→0+

Im
(

1
x− εi

)
. (4.5)

We now write w(x) using Eqs. 4.1 and 4.2:

w(x) =− 1
π

lim
ε→0+

Im
(∫

R

w(x′)
x′− x+ εi

dx′
)
=

1
π

lim
ε→0+

∫
R

w(x′)ε
(x′− x)2 + ε2 dx′, (4.6)

where we used Eq. 4.4 in the last step. Substituting w(x′) from Eq. 1.7, we continue to write

w(x) =
1
π

lim
ε→0+

∫
R

1
S

S

∑
i=1

δ (λi− x′)
ε

(x′− x)2 + ε2 dx′ =
1
π

lim
ε→0+

1
S

S

∑
i=1

ε

(λi− x)2 + ε2

=
1
S

S

∑
i=1

(
1
π

lim
ε→0+

ε

(λi− x)2 + ε2

)
︸ ︷︷ ︸

δ (λi−x)

=
1
S

S

∑
i=1

δ (λi− x),
(4.7)

which is equal to w(x) by Eq. 1.7. This shows that Eq. 4.2 indeed recovers the spectral distribution.
The resolvent can be used to calculate the spectral distribution of the sum of a symmetric

random matrix M and another “deterministic” symmetric matrix D with known spectral distribution
p(x). Let M be a standard elliptic matrix with ρ = 1 (Section 1.3); the correlation of unity ensures
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symmetry. The spectral distribution of M then reduces to the Wigner semicircle law (Wigner 1958).
The resolvent G(z) of M+D is given by the formula of Pastur (1972):

G(z) = GD(z+G(z)), (4.8)

where GD(z) is the resolvent of D. This can be written, using Eq. 4.1 and the fact that D’s spectral
distribution is given by p(x), as

GD(z) =
∫
R

p(x′)
x′− z

dx′. (4.9)

Therefore, Eq. 4.8 reads

G(z) =
∫
R

p(x′)
x′− z−G(z)

dx′. (4.10)

Solving this equation for G(z) yields the resolvent.
Below, we extend this method to the nonsymmetric case.

4.2 Spectral density and the resolvent for nonsymmetric matrices

Let M be a standard elliptic matrix with spectral density w(z), z ∈ C (Section 1.3). Just as in
the symmetric case, direct calculations with w(z) are cumbersome: it is more convenient to do
calculations with the resolvent

G(z) =
∫
C

w(z′)
z′− z

dz′. (4.11)

The integration goes across the whole complex plane, since the eigenvalues are themselves complex.
However, this means that the resolvent has pole singularities whenever z is equal to one of the
eigenvalues. To regularize the resolvent, one must consider the quaternionic resolvent G(q) ∈H, as
a function of the quaternionic argument q ∈H (Rogers 2010). The quaternionic resolvent reads

G(q) =
∫
C

w(z′)
(
z′−q

)−1 dz′, (4.12)

which is well-defined as long as q = z+uj with u 6= 0. Note that, since quaternionic multiplication
is not commutative, we use the inverse notation q−1 for quaternions.

As in the symmetric case, the spectral density function can be recovered from the resolvent—this
time via the formula

w(z) =− 1
π

lim
ε→0+

Re
(

∂

∂ z̄
G(z+ εj)

)
(4.13)

(Rogers 2010), where Re(·) denotes the real part, ε approaches zero from positive values, and ∂/∂ z̄
is the antiholomorphic derivative, which can also be written in terms of components: if z = x+ yi
with x,y ∈ R, we have

∂

∂ z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
. (4.14)

Using this, the spectral density reads

w(z) =− 1
2π

lim
ε→0+

Re
((

∂

∂x
+ i

∂

∂y

)
G(x+ yi+ εj)

)
. (4.15)
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In principle, the limit must be taken after the real part of the derivative is evaluated. In practice, this
only makes a difference if the derivative behaves singularly at ε = 0. As long as this is not the case,
we can take the limit right away and write

w(z) =− 1
2π

Re
((

∂

∂x
+ i

∂

∂y

)
G(x+ yi)

)
. (4.16)

In our applications, there is never any singular behavior at ε = 0, so Eq. 4.16 can be used.
The generalization of Pastur’s (1972) formula Eq. 4.8 to the nonsymmetric case was derived by

Rogers (2010):
G(q) = GD(q+(ρ + j)◦G(q)). (4.17)

Let the spectral density of D be given by p(h); the resolvent GD(h) then reads

GD(h) =
∫
C

p(h)(h−q)−1 dh. (4.18)

Substituting into Eq. 4.17, we get

G(q) =
∫
C

p(h)(h−q− (ρ + j)◦G(q))−1 dh. (4.19)

4.3 Calculation of the quaternionic resolvent

Let M be a standard elliptic matrix (Section 1.3), and let D be a matrix of known spectral density
p(h), with resolvent GD(h). Let G(q) be the resolvent of M+D. Our task is to find this resolvent,
and use it to obtain the spectral distribution of M+D via Eq. 4.13.

We start from Eq. 4.19. Writing q = z+ εj and taking the ε → 0+ limit now (as stated before,
this can be done unless the resolvent is singular at ε = 0), this simplifies to

G(z) =
∫
C

p(h)(h− z− (ρ + j)◦G(z))−1 dh. (4.20)

Since G is quaternionic, we can write it as G = α +β j (we suppressed the arguments for better
readability). We now have

α +β j =
∫
C

p(h)(h− z−ρα−β j)−1 dh, (4.21)

where we used the entrywise product rule of Eq. 3.13. Using the conjugate to express the inverse as
in Eq. 3.12, this is equivalently written as

α +β j =
∫
C

p(h)
h̄− z̄−ρᾱ +β j
|h− z−ρα|2 + |β |2

dh, (4.22)

where the denominator is now a nonnegative real number.
Both sides of this equation are quaternionic. Two quaternions q1 = z1 +u1j and q2 = z2 +u2j

are equal if and only if z1 = z2 and u1 = u2 simultaneously. We can therefore write

β =
∫
C

p(h)
β

|h− z−ρα|2 + |β |2
dh, (4.23)

α =
∫
C

p(h)
h̄− z̄−ρᾱ

|h− z−ρα|2 + |β |2
dh. (4.24)
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From the first of these equations, we can see that β = 0 is always a solution. Whether it leads to a
positive spectral density has to be ascertained by solving for α via Eq. 4.24 (setting |β |2 = 0), and
evaluating w(z) using Eq. 4.13. Otherwise, assuming β 6= 0, Eqs. 4.23 and 4.24 read

1 =
∫
C

p(h)
1

|h− z−ρα|2 + |β |2
dh, (4.25)

α =
∫
C

p(h)
h̄− z̄−ρᾱ

|h− z−ρα|2 + |β |2
dh. (4.26)

Writing α ∈ C as α = αre +αimi with αre,αim ∈ R, we have

1 =
∫
C

p(h)
1

|h− z−ρ(αre +αimi)|2 + |β |2
dh, (4.27)

αre +αimi =
∫
C

p(h)
h̄− z̄−ρ(αre−αimi)

|h− z−ρ(αre +αimi)|2 + |β |2
dh. (4.28)

We can do the same with z = x+ yi:

1 =
∫
C

p(h)
1

|h− x− yi−ρ(αre +αimi)|2 + |β |2
dh, (4.29)

αre +αimi =
∫
C

p(h)
h̄− x+ yi−ρ(αre−αimi)

|h− x− yi−ρ(αre +αimi)|2 + |β |2
dh. (4.30)

Expanding in the denominators:

1 =
∫
C

p(h)
1

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh, (4.31)

αre +αimi =
∫
C

p(h)
h̄− x+ yi−ρ(αre−αimi)

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh. (4.32)

In the second equation, the real and imaginary parts must separately be equal. We therefore have the
following three equations:

1 =
∫
C

p(h)
1

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh, (4.33)

αre =
∫
C

p(h)
Re(h)− x−ραre

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh, (4.34)

αim =
∫
C

p(h)
−Im(h)+ y+ραim

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh. (4.35)

This is a set of three equations for the real variables |β |, αre, and αim, and is as far as one can go
without specifying p(h). The solution gives the quaternionic resolvent G = α +β j, from which the
spectral density can be obtained via Eq. 4.16. One can also use these equations to study properties
other than the spectral distribution, such as its support or the spectral abscissa. Below we give
examples of using the equations in this way.
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4.4 Calculation of the quaternionic resolvent in case the deterministic matrix has
purely real eigenvalues

Further simplification is possible if the eigenvalues of D are purely real. Then Re(h) = h, Im(h) = 0,
and the integrals sweep through the real axis only:

1 =
∫
R

p(h)
1

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh, (4.36)

αre =
∫
R

p(h)
h− x−ραre

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh, (4.37)

αim =
∫
R

p(h)
y+ραim

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh. (4.38)

The numerator in the last equation does not depend on h. It can therefore be brought out in front of
the integral:

αim = (y+ραim)
∫
R

p(h)
1

(h− x−ραre)2 +(y+ραim)2 + |β |2
dh. (4.39)

But the integral is equal to 1 according to Eq. 4.36. We therefore have

αim = y+ραim, (4.40)

whose solution is
αim =

y
1−ρ

. (4.41)

Substituting this back into Eqs. 4.36 and 4.37, we eliminate αim:

1 =
∫
R

p(h)
1

(h− x−ραre)2 + y2/(1−ρ)2 + |β |2
dh, (4.42)

αre =
∫
R

p(h)
h− x−ραre

(h− x−ραre)2 + y2/(1−ρ)2 + |β |2
dh. (4.43)

We are therefore left having to solve only these two equations.

5 The effect of diagonal entries on the spectrum of elliptic matrices

In this section we use the quaternionic resolvent method to obtain stability criteria for random
ecological networks with varying patterns of self-regulation. The interaction matrix A is constructed
A = M+D, where M is a standard elliptic matrix (Section 1.3), and D is a diagonal matrix with a
known distribution p(h) of its diagonal entries (h ∈ R). Since for a diagonal matrix the diagonal
entries are the eigenvalues themselves, p(h) is also equal to D’s spectral distribution. Then, one can
use the method of quaternionic resolvents to calculate the spectral distribution of A = M+D. For
evaluating network stability, we ultimately would like to know the spectral abscissa η(A), defined
in Eq. 1.9: η(A)< 0 implies local stability.
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5.1 Uniformly distributed diagonal entries

Let the diagonal entries of D be sampled from the uniform distribution

p(h) =
Θ(h−d1)−Θ(h−d2)

d2−d1
, (5.1)

where d1 < d2, and Θ(·) is the Heaviside step function, equal to 0 for negative arguments and to 1
otherwise. To obtain the spectral distribution of A = M+D, we write the equations for the resolvent
via Eqs. 4.42 and 4.43. The integrals evaluate to

1 =

tan−1

(
x+ραre−d2√

y2/(1−ρ)2 + |β |2

)
− tan−1

(
x+ραre−d1√

y2/(1−ρ)2 + |β |2

)
(d1−d2)

√
y2/(1−ρ)2 + |β |2

, (5.2)

αre =
1

2(d2−d1)
log
(
(x+ραre−d2)

2 + y2/(1−ρ)2 + |β |2

(x+ραre− d1 )2 + y2/(1−ρ)2 + |β |2

)
. (5.3)

In principle, one should solve this system of equations for αre and β , obtaining an explicit formula
for the quaternionic resolvent G=αre+αimi+β j, where αim = y/(1−ρ) from Eq. 4.41. In practice,
the solution cannot be obtained in explicit form. However, what we are really interested in is not
the full spectral distribution, but the spectral abscissa η(A), determining the stability properties of
the system. Since |β | ≥ 0, any point x+ yi in the complex plane can only be part of the support
of w(z) if the corresponding |β | is nonnegative. The values of x+ yi at which |β | becomes exactly
zero therefore signal the outer edge of the spectral distribution. We can simplify our search by
restricting it along the real axis, i.e., setting y = 0. By this we assume that the rightmost point of the
spectral distribution along the real axis is also the rightmost point overall (this assumption has been
confirmed in every scenario we looked at). We then solve the equations for x in the limit of |β | → 0,
the largest real root of which yields the spectral abscissa η(A).

First we write Eqs. 5.2 and 5.3 for y = 0:

1 =

tan−1
(

x+ραre−d2

|β |

)
− tan−1

(
x+ραre−d1

|β |

)
(d1−d2)|β |

, (5.4)

αre =
1

2(d2−d1)
log
(
(x+ραre−d2)

2 + |β |2

(x+ραre− d1 )2 + |β |2

)
. (5.5)

We can now take the |β | → 0 limit. In doing so, notice that the right hand side of the first equation
behaves singularly at |β |= 0. To evaluate the limit, one can use L’Hôpital’s rule: take the derivative
of the numerator and the denominator separately, and evaluate their ratio at |β |= 0. Then the two
equations read, in the |β | → 0 limit, as

1 =
1

(x+ραre−d2)(x+ραre−d1)
, (5.6)

αre =
1

d2−d1
log
(∣∣∣∣x+ραre−d2

x+ραre−d1

∣∣∣∣). (5.7)
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We now need to solve this system of equations for x. We do this by introducing the new variable
X = x+ραre. We then have

1 =
1

(X−d2)(X−d1)
, (5.8)

αre =
1

d2−d1
log
(∣∣∣∣X−d2

X−d1

∣∣∣∣), (5.9)

decoupling the two equations. The first is quadratic in X , so the solution can be written immediately:

X± =
d2 +d1

2
±

√(
d2−d1

2

)2

+1. (5.10)

Substituting this back into Eq. 5.9 and simplifying, we get, for αre,

αre,± =∓ 2
d2−d1

tanh−1

(
d2−d1√

(d2−d1)2 +4

)
. (5.11)

Since X = x+ραre, the solution for x reads x = X±−ραre,±. The spectral abscissa η(A) is the
maximum possible value of x, which we obtain by taking the larger of the two roots. We therefore
have η(A) = X+−ραre,+:

η(A) =
d2 +d1

2
+

√(
d2−d1

2

)2

+1+
2ρ

d2−d1
tanh−1

(
d2−d1√

(d2−d1)2 +4

)
. (5.12)

This expression has some properties that are immediately apparent. First, it is linear in ρ . The
dependence on the correlation is therefore especially simple. Second, note that d2+d1 is proportional
to the mean, and d2−d1 > 0 to the standard deviation of the uniform distribution p(h). For fixed
mean and correlation, η(A) is a monotonically increasing function of the standard deviation. This
means that, for a given mean, increasing the variance will always increase η(A), and will therefore
work towards destabilizing the system, as would be expected in general (Section 1.2). Third, assume
momentarily that ρ = 0, and that d2 = 0. This means that the species’ self-regulation values are
uniformly drawn from [d1, 0], where d1 is some fixed negative value. We then have

η(A) =
d1

2
+

√(
d1

2

)2

+1 , (5.13)

which is always positive, and approaches zero for d1→−∞. A system with zero correlation and
uniformly sampled diagonal entries with an upper bound of d2 = 0 can therefore never be stabilized.
Relaxing the requirement of ρ = 0, we can see from Eq. 5.12 that any ρ > 0 will contribute another
positive term to the already positive η(A), further destabilizing the system. In conclusion, for
d2 = 0, stability can only be achieved by negative correlation.

Take now the ρ < 0 case with d2 = 0. Then η(A) attains a minimum at some d1 < 0, as is
clear by taking derivatives in Eq. 5.12. Beyond this point, increasing the strength of self-regulation
by increasing d1 has a destabilizing effect (Supplementary Figure 11). This is in fact the same
phenomenon as in the left panel of Supplementary Figure 7, further supporting the idea that, for
negative correlation, the most stabilized communities occur at intermediate self-regulation strengths.
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Supplementary Figure 11: Spectral abscissa η(A) as a function of d1, with ρ = −1/2 and d2 = 0. The
curve has a minimum at some intermediate value of d1. Just as before in Supplementary Figure 7, increasing
the average strength of self-regulation by increasing d1 becomes destabilizing beyond this point as long as
ρ < 0.

5.2 Diagonal entries sampled from two discrete values

We now sample the diagonal entries of D from the distribution

p(h) = Pδ (h−d1)+(1−P)δ (h−d2), (5.14)

where δ (·) is the Dirac delta function. In words, any one diagonal entry will be set equal to d1 with
probability P and to d2 with probability 1−P. Since D is diagonal, its diagonal entries are also
equal to its eigenvalues. We assume d1 < d2 without loss of generality.

We wish to know the spectral distribution of A = M+D, where M is a standard elliptic matrix.
The integrals in Eqs. 4.42 and 4.43 can be evaluated using the Dirac deltas:

1 =
P

(x+ραre−d1)2 + y2/(1−ρ)2 + |β |2
+

1−P
(x+ραre−d2)2 + y2/(1−ρ)2 + |β |2

, (5.15)

αre =−
P(x+ραre−d1)

(x+ραre−d1)2 + y2/(1−ρ)2 + |β |2
− (1−P)(x+ραre−d2)

(x+ραre−d2)2 + y2/(1−ρ)2 + |β |2
. (5.16)

Assuming, as before, that the spectral abscissa lies along the real axis, we can set y = 0 and write

1 =
P

(x+ραre−d1)2 + |β |2
+

1−P
(x+ραre−d2)2 + |β |2

, (5.17)

αre =−
P(x+ραre−d1)

(x+ραre−d1)2 + |β |2
− (1−P)(x+ραre−d2)

(x+ραre−d2)2 + |β |2
. (5.18)

In the |β | → 0 limit, we have

1 =
P

(x+ραre−d1)2 +
1−P

(x+ραre−d2)2 , (5.19)

αre =−
P

x+ραre−d1
− 1−P

x+ραre−d2
. (5.20)
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To solve these equations, let us introduce the new variable X = x−d2 +ραre and the new parameter
∆ = d2−d1 > 0:

1 =
P

(X +∆)2 +
1−P

X2 , (5.21)

αre =−
P

X +∆
− 1−P

X
. (5.22)

The first equation is a fourth-order polynomial in X . One root is always real and larger than the real
part of the other three roots:

X =−∆

2
+

√
3

6

√
2∆2 +

6
√

3∆(1−2P)
√

Q√
∆4 +∆2(Q−2)+(Q+1)2

− (∆2−1)2

Q
−Q+4

+

√
3

6

√
∆4 +∆2(Q−2)+(Q+1)2

Q
,

(5.23)

where

Q =

[
∆

6−3∆
4 +∆

2(54P2−54P+3
)
−1

+6
√

3∆

√
(P−1)P(∆6−3∆4 +3∆2(9P2−9P+1)−1)

]1/3

.

(5.24)

Substituting Eq. 5.23 into Eq. 5.22 yields αre. The spectral abscissa η(A) is then obtained via
η(A) = X +d2−ραre:

η(A) = X +d2 +ρ

(
P

X +∆
+

1−P
X

)
. (5.25)

Like in the uniform case before, the solution is linear in ρ . We can also easily obtain the solution in
two limiting cases: d1→ d2 and d1→−∞. In the former case, Eqs. 5.21 and 5.22 simplify to

1 =
1

X2 , (5.26)

αre =−
1
X
, (5.27)

yielding X± =±1, αre,± =∓1. The spectral abscissa η(A) = X +d2−ραre is given by the larger
root:

η(A) = 1+ρ +d2. (5.28)

In the latter limiting case of d1→−∞, we have

1 =
1−P

X2 , (5.29)

αre =−
1−P

X
, (5.30)

yielding X± =±
√

1−P, αre,± =∓
√

1−P. The spectral abscissa η(A) = X +d2−ραre is

η(A) =
√

1−P(1+ρ)+d2. (5.31)
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Supplementary Figure 12: Spectral abscissa η(A) plotted against d1 < 0 when each diagonal entry of D
is either d1 or d2. Here we assume d2 = 0. Insets are for various combinations of ρ (correlation) and P
(probability of nonzero self-regulation). The ρ > 0 case is not plotted, as stability cannot ever be achieved in
that case. Note that the P = 1 case is not plotted, as that simply corresponds to the matrix having a constant
diagonal, leading to a simple linear relationship between η(A) and d1. However, as long as P is not precisely
1, a very different behavior is observed (rightmost column, corresponding to P = 0.99), with intermediate
values of d1 leading to the most stabilized communities.
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In between these two extremes, it is easy to map out the behavior of the full solution η(A), given by
Eq. 5.25. Supplementary Figure 12 shows this, exploring the effect of the three parameters d1, P,
and ρ (setting d2 = 0). The ρ > 0 regime is not shown, because this always result in η(A)> 0 and
therefore an unstable system.

Assume d2 = 0. Biologically, this means that there are two groups of species: those that possess
self-regulation (with d1 in the corresponding diagonal entry of A = M+D), and those that do not.
In this case, the spectral abscissas for the limiting cases of Eqs. 5.28 and 5.31 are nonnegative.
Therefore, the system cannot be stabilized in either of these limits. As before, for ρ < 0, stability
may be achieved for intermediate values of d1 (Supplementary Figure 12). This holds as long as
there is even just one single species that is not self-regulated.

5.3 The zero-inflated uniform distribution

Let the diagonal entries of D be sampled from the distribution

p(h) = P
Θ(h−d1)−Θ(h−d2)

d2−d1
+(1−P)δ (h). (5.32)

Here d1 < d2, Θ(·) is the Heaviside step function (equal to 0 for negative arguments and to 1
otherwise), and δ (·) is the Dirac delta function. The distribution p(h) is a zero-inflated uniform
distribution: each entry is sampled uniformly from [d1, d2] with probability P, or else set to zero
with probability 1−P.

To get the spectral distribution of A = M+D, we write the equations for the resolvent via
Eqs. 4.42 and 4.43. The integrals evaluate to

1 = P

tan−1

(
x+ραre−d2√

y2/(1−ρ)2 + |β |2

)
− tan−1

(
x+ραre−d1√

y2/(1−ρ)2 + |β |2

)
(d1−d2)

√
y2/(1−ρ)2 + |β |2

+
1−P

(x+ραre)2 + y2/(1−ρ)2 + |β |2

(5.33)

and

αre =
P

2(d2−d1)
log
(
(x+ραre−d2)

2 + y2/(1−ρ)2 + |β |2

(x+ραre− d1 )2 + y2/(1−ρ)2 + |β |2

)
− (1−P)(x+ραre)

(x+ραre)2 + y2/(1−ρ)2 + |β |2
.

(5.34)

We look for the spectral abscissa along the real axis, setting y = 0:

1 = P
tan−1

(
x+ραre−d2

|β |

)
− tan−1

(
x+ραre−d1

|β |

)
(d1−d2)|β |

+
1−P

(x+ραre)2 + |β |2
, (5.35)

αre =
P

2(d2−d1)
log
(
(x+ραre−d2)

2 + |β |2

(x+ραre− d1 )2 + |β |2

)
− (1−P)(x+ραre)

(x+ραre)2 + |β |2
, (5.36)
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and now take the |β | → 0 limit, using L’Hôpital’s rule in the first term of the right hand side of
Eq. 5.35:

1 =
P

(x+ραre−d2)(x+ραre−d1)
+

1−P
(x+ραre)2 , (5.37)

αre =
P

d2−d1
log
(∣∣∣∣x+ραre−d2

x+ραre−d1

∣∣∣∣)− 1−P
x+ραre

. (5.38)

Let us introduce the new variable X = x+ραre:

1 =
P

(X−d2)(X−d1)
+

1−P
X2 , (5.39)

αre =
P

d2−d1
log
(∣∣∣∣X−d2

X−d1

∣∣∣∣)− 1−P
X

. (5.40)

The first of these equations is a fourth-order polynomial in X . Its largest (real) root is

X =
d1 +d2

4
+

√
3

12

√
3d2

1 −2d2d1 +3d2
2 +4Q/R+25/3R+8

+

√
6

12

 3
√

3(d1 +d2)
(
d2

1 −2d2d1 +d2
2 +8P−4

)√
3d2

1 −2d2d1 +3d2
2 +4Q/R+25/3R+8

+3d2
1 −2d1d2 +3d2

2 −2Q/R−22/3R+8

]1/2

,

(5.41)

where
Q =

3
√

2
[
d2

1
(
d2

2 −3P+3
)
+2d2d1(3P−4)−3d2

2(P−1)+1
]

(5.42)

and

R =

[
−9(d1 +d2)

2(d1d2−1)(P−1)−72d1d2(d1d2−1)(P−1)+27(d1 +d2)
2(P−1)2

+27d1d2(d1 +d2)
2(P−1)+

[{
−9(d1 +d2)

2(d1d2−1)(P−1)−72d1d2

(d1d2−1)(P−1)+27(d1 +d2)
2(P−1)2 +27d1d2(d1 +d2)

2(P−1)

+2(d1d2−1)3
}2
−4
{
−3(d1 +d2)

2(P−1)+12d1d2(P−1)+(d1d2−1)2
}3
]1/2

+2(d1d2−1)3
]1/3

.

(5.43)

Next, αre is obtained by substituting the above expression for X into Eq. 5.40. The spectral abscissa
η(A) = X−ραre is then given by

η(A) = X +ρ

[
1−P

X
− P

d2−d1
log
(∣∣∣∣X−d2

X−d1

∣∣∣∣)]. (5.44)

The behavior of this solution is qualitatively the same as that of Eq. 5.25, as shown in Supplementary
Figure 13 (compare with Supplementary Figure 12). The difference between the two is due to a
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Supplementary Figure 13: The spectral abscissa η(A) plotted against d1 < 0 when the diagonal entries are
drawn from the zero-inflated uniform distribution Eq. 5.32. Here we assume d2 = 0. Insets are for various
combinations of ρ (correlation) and P (probability of nonzero self-regulation). Results are qualitatively the
same as in Supplementary Figure 12. Note that here it makes sense to plot results for P = 1, which leads to
the diagonal being uniformly distributed without zero-inflation—so we recover the results of Section 5.1. The
subplot with P = 1 and ρ =−1/2 is in fact simply a rescaled version of Supplementary Figure 11.
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difference in the variance of the diagonal entries, because the eigenvalues acquire more spread along
the real axis by having greater diagonal variance (Section 1.2). Assuming d2 = 0, the variance of
the distribution given by Eq. 5.14 is d2

1P(1−P), and of the zero-inflated uniform distribution given
by Eq. 5.32, d2

1P(1/3−P/4). The first of these has the larger variance for the same values of P
and d1 as long as P < 8/9, and will therefore possess a larger η(A), leading to diminished chances
for stability. For 8/9 < P < 1, the zero-inflated uniform distribution has the higher variance and
therefore η(A). These can all be seen by comparing Supplementary Figures 12 and 13.

The results of Section 5.1, 5.2, and 5.3 are exact in the S→ ∞ limit. To assess how well they
perform for finite S, we can compare their predictions with simulated results—see Supplementary
Figures 14 and 15, where this comparison is performed for the case when the diagonal entries are
sampled from Eq. 5.14. The approximation works exceptionally well even for S = 500. Note that,
since the actual matrices are elliptic but not standard elliptic (Section 1.3), the formulae for η(A)
need to be appropriately rescaled by

√
SV before they can be applied.

5.4 The likelihood of stability in random networks

The most important consequence of the equations that were derived for η(A) is that stability can
only be reasonably achieved if the fraction of self-regulating species P is very high. Supplementary
Figure 16 shows the minimum fraction of self-regulating species P as a function of the correlation ρ

and the scaled self-regulation strength d1/
√

SV , for the cases when the diagonal entries are either
sampled from Eq. 5.14 or Eq. 5.32 (we do not consider Eq. 5.1 here, since that is equivalent to
Eq. 5.32 with P = 1, so all species self-regulate to some extent). Regions where stability is possible
without P≈ 1 are confined to a small corner of parameter space. Importantly, stability is easy to
achieve for either ρ ≈−1 or P≈ 1 (except in the gray shaded regions, where stability is impossible).

The first of these, ρ ≈−1, implies that the effect of predators on prey is exactly the same, just
with opposite sign, as the effect of prey on predators. This is a very unlikely scenario, both because
it is fine-tuned and because prey generally have a smaller effect on predators than vice versa due to
physical limits on the efficiency of energy conversion.

One is therefore left with the other option, P≈ 1. The conclusion is the same as in Section 2.
The results obtained via the method of quaternionic resolvents can be thought of as a generalization
and extension to those obtained via the low-rank perturbation theorem. To stabilize a random
network, the vast majority of species must exhibit substantial self-regulation.
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Supplementary Figure 14: Spectra (yellow points) of matrices A = M+D. Here M is a fixed elliptic matrix
with S = 500, V = 1, and ρ =−1/2, while D is sampled from Eq. 5.14 with d1 =−40, d2 = 0, and different
values for P (panels). The grey dashed line separates the left and right halves of the complex plane. The red
dashed line shows the analytical prediction for η(A), calculated from Eq. 5.25 with appropriate rescaling by√

SV due to the fact that the matrix, though elliptic, is not standardized. The analytical prediction captures
the actual value of η(A) very well in all cases.
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Supplementary Figure 15: As Supplementary Figure 14, but showing only η(A) as a function of P, the
fraction of self-regulating species. Green band: the standard deviation of η(A) out of 100 independent
simulated realizations of D. Yellow line: the mean η(A) over the 100 realizations. Red dashed line: the
theoretical expectation from Eq. 5.25 (notice that it is right on top of the yellow line).
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Supplementary Figure 16: The minimum fraction of self-regulating species P needed to stabilize an elliptic
matrix, given as a function of ρ and the scaled self-regulation strength d1/

√
SV . To obtain the minimum

P, we use Eqs. 5.25 (left) and 5.44 (right) by finding the smallest 0≤ P≤ 1 for which η(A) = 0, for given
values of ρ and d1/

√
SV . Diagonal entries are sampled from Eq. 5.14 (left) and Eq. 5.32 (right); in both cases

d2 = 0. Offdiagonal entries form an elliptic matrix, not necessarily standardized—hence the scaling of the
diagonal entries by

√
SV . In the gray shaded regions stability cannot be achieved for any value of P. Broadly

speaking, stability is only possible for P≈ 1 and/or ρ ≈−1.



Self-regulation and the stability of large ecological networks Page 47

6 The effect of diagonal entries on matrices with cascade structure

As discussed in Section 2.5, a community matrix with cascade structure is written as A = H+Q,
where the low-rank perturbation H is given by Eq. 2.13, and Q is a random matrix with zero mean
but different variances in its upper and lower triangular entries. The spectrum of Q is equivalent to
that of an elliptic matrix MQ, with effective variance and correlation Veff and ρeff calculated from
the raw parameters of the actual ecological network via Eqs. 2.17, 2.18, and 2.19. To evaluate the
spectral abscissa of A = H+Q, it is therefore sufficient to determine the spectrum of MQ +H,
which is a low-rank perturbed elliptic matrix.

We add self-regulation to species, using the diagonal matrix D:

A = MQ +H+D. (6.1)

Since the spectrum of H+D is known (Supplementary Figure 10), we could apply the method of
quaternionic resolvents, via Eqs. 4.33, 4.34, and 4.35. To do so, we need the spectral distribution
p(h) of H+D. Now, in general the joint distribution p(h) cannot be written as the simple sum of
the spectral distributions. However, in our particular case, this is a reasonable approximation, as
evidenced by Supplementary Figure 10. This fortunate coincidence allows one to approximate p(h)
as

p(h) =
S− k

S
pD(h)+

k
S

k

∑
i=1

δ (h−λi), (6.2)

where pD(h) is the distribution of diagonal entries (given, for instance, by Eq. 5.14), k is the
(effective) rank of H with corresponding nonzero eigenvalues λi (given by Eq. 2.14 and shown on
Supplementary Figure 9 by the blue circles), and δ (·) is the Dirac delta function.

Since k� S, the second term in Eq. 6.2 goes to zero in the limit of large S. As such, it is not
expected to influence the spectral distribution except right at the points λi, where the term cannot
be neglected due to the presence of the Dirac delta peaks. However, the λi always lie to the left of
the spectral abscissa as long as |µL|> |µU| (Section 2.5, Supplementary Figures 8 & 9; Allesina
et al. 2015), and therefore do not have an appreciable impact on η(A). Our strategy for calculating
η(A) is therefore especially simple: take the effective elliptic matrix MQ and obtain the spectrum of
MQ +D via the method of quaternionic resolvents. This means that all the results of Section 5 carry
over; the only difference is that, instead of the actual variance V and correlation ρ , the effective
parameters Veff and ρeff must be used. These in turn can be calculated using Eqs. 2.17, 2.18, and
2.19.

Since to arrive at this simple result we employed two important approximations (the spectrum
of the sum of H and D decomposes into the sum of the spectra, and the influence of H on the
spectral abscissa is negligible; neither statement can be strictly true), we must check how well the
method works in practice. As shown in Supplementary Figures 17 and 18 for a cascade network
with S = 500, η(A) is captured very accurately, showing that the method works in practice.

7 Self-regulation and stability in empirical networks

7.1 Food web parameterization

For investigating how self-regulation affects stability in real-world systems, we looked at two types
of data. First, we used published Jacobian matrices that were obtained using an Ecopath modeling
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Supplementary Figure 17: Spectra (yellow points) of matrices A = Q+H+D, where Q+H yield the
cascade structure, and the entries of the diagonal matrix D are sampled from Eq. 5.14 with d1 =−20, d2 = 0,
and different values for P (panels). H is given by Eq. 2.13, and Q has zero diagonal, zero mean, variance σ2

U
for the upper triangular entries, σ2

L for the lower triangular ones, and correlation ρUL between the (i, j)th and
( j, i)th entries. The grey dashed line separates the left and right halves of the complex plane. The red dashed
line shows the analytical prediction for η(A), based on applying Eq. 5.25 to the effective elliptic matrix MQ
rescaled by

√
SVeff because the matrices were not standardized. The analytical prediction captures the actual

value of η(A) very well in all cases. Parameters: S = 500, µU = −1, µL = 0.05, σU = 0.55, σL = 0.055,
ρUL =−0.5.
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Supplementary Figure 18: As Supplementary Figure 17, but showing only η(A) as a function of P, the
fraction of self-regulating species. Green band: standard deviation of η(A) out of 100 independent simulated
realizations of D. Yellow line: the mean η(A) over the 100 realizations. Red dashed line: the theoretical
expectation from Eq. 5.25, but applied to the low-rank perturbed effective elliptic matrix MQ +H.

framework (Jacquet et al. 2016). These were already fully parameterized and therefore ready for
direct analysis. Their downside is that even the largest seven Ecopath matrices had only between
39 and 51 species. The webs used in this study are listed in Table 1. Second, we parameterized
12 well-resolved empirical food webs (Table 2), which had between 170 and 484 species. Before
parameterizing these matrices, we removed cannibalistic self-loops, and in the few cases two species
mutually predated on each other, we dropped one of the two feeding links at random.

To parameterize the adjacency matrices of the well-resolved webs, we followed the methodology
in Tang et al. (2014) and Allesina et al. (2015). In brief, we assumed that all nonzero pairs (Ai j,A ji)
of the interaction matrix A are determined via body mass scaling allometries and a type I functional
response:

Ai j =−ai jN∗i , A ji = ei jai jN∗j , (7.1)

Name Species Links Reference
Chesapeake (present) 41 167 Christensen et al. (2009)
Mid Atlantic Bight 51 515 Okey and Pugliese (2001)
Moorea Barrier Reef 39 267 Arias-Gonzalez et al. (1997)
Newfoundland Grand Banks (1900) 48 519 Heymans and Pitcher (2002)
Newfoundland Grand Banks (mid-1980s) 48 519 Heymans and Pitcher (2002)
Newfoundland Grand Banks (mid-1990s) 48 525 Heymans and Pitcher (2002)
Tampa Bay 48 340 Walters et al. (2005)

Supplementary Table 1: Information on the seven largest Ecopath networks parameterized by Jacquet et al.
(2016), with each row corresponding to a different web. Columns indicate, respectively, the name of the web,
its number of species S, and number of links L.
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where N∗i are species’ equilibrium biomasses, ai j are the attack rates, and ei j the conversion
efficiencies. The N∗i were parameterized using the known linear relationship between numerical
abundance N∗i /mi and body mass mi on the log scale (Tang et al. 2014):

N∗i = 10n0+g+εimg+1
i , (7.2)

where n0 =−1.16, εi are drawn from a normal distribution with mean 0 and standard deviation 0.2,
and g (controlling the scaling between body mass and equilibrium abundance) was set to either
−0.55, −0.75, or −0.95. The body masses mi were obtained from the database of Brose et al.
(2005) on consumer-resource interactions; see Allesina et al. (2015) for details. The attack rates ai j

were modeled via

ai j = 10−3.5m j
(mi/m j)

0.46

1+(mi/m j)
2 , (7.3)

where m j is the consumer and mi the resource mass. The factor 103.5 simply converts units of
mass into grams, while the fractional term quantifies the well-documented unimodal relationship
between search and consumption rates and size ratios (this choice, as well as the motivations for the
numerical values of the exponents, are found in Pawar et al. 2012). Finally, the efficiencies ei j were
sampled uniformly from the interval [0.1, 0.25].

Having obtained all the effects of prey on predators and predators on prey (call their distributions
X and Y , respectively), they were combined into the bivariate distribution Z(X ,Y ). The nonzero
pairs of entries (Ai j,A ji) were then sampled from this bivariate distribution to complete the param-
eterization of the food webs. Each parameterization was performed three times: with g =−0.55,
g =−0.75, and g =−0.95, after Allesina et al. (2015).

Name Species Links Structural rank Reference
Carpinteria Salt Marsh 272 3878 197 Hechinger et al. (2011)
Flensburg Fjord 180 1567 128 Zander et al. (2011)
Kongs Fjorden 268 1632 164 Jacob et al. (2011)
Little Rock Lake 181 2316 150 Martinez (1991)
Lough Hyne 349 5088 287 Riede et al. (2011)
Otago Harbour 180 1856 158 Mouritsen et al. (2011)
Punta Banda 355 5291 234 Hechinger et al. (2011)
Caribbean Reef 249 3293 204 Opitz (1996)
San Quintin 289 3934 179 Hechinger et al. (2011)
Serengeti 170 585 54 Baskerville et al. (2011)
Sylt Tidal Basin 230 3298 215 Thieltges et al. (2011)
Weddell Sea 484 15435 448 Jacob (2005)

Supplementary Table 2: Well-resolved empirical food web data used in this paper. Each row corresponds to
a different food web. Columns indicate, respectively, the name of the web, its number of species S, number of
links L, structural rank RS (which is the maximum possible rank the matrix of the web can attain assuming its
nonzero entries are arbitrary; Reinschke 1988), and a reference for the source of the original data.

7.2 Introducing self-regulation

The diagonal entries of the parameterized matrices A were set to d with probability P, or to zero
with probability 1−P. This leads to the distribution Eq. 5.14 for the diagonal entries with d1 = d
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and d2 = 0. The strength of self-regulation d was chosen as follows. First, the spectral abscissa
η(A) of each food web was calculated without self-effects. Then, d could take on the values
d =−2q η(A), where q = 0.5, 1.5, 2.5, . . ., 7.5. That is, eight different strengths of self-regulation
were implemented for each web, measured in units of the leading eigenvalue η(A). Note that, since
the trace of the matrices without the diagonal entries is zero, and the trace is also the sum of all
eigenvalues, η(A) is necessarily positive; hence the negative sign above in the definition of d.

The protocol for examining food web stability was as follows. We run through each of the 12
webs in Table 2, and each web is parameterized using the three different values of g as described in
Section 7.1, leading to 36 combinations. For each of these, the number of self-regulating species
was increased one by one from the structural rank (Reinschke 1988; see also below) of the matrix
(fewer species self-regulating than this cannot lead to stability) to the total number of species in the
given network. The number of self-regulating species divided by their total number yields P. For
each value of P, d was varied via the parameter q as described above. For each combination of P
and d, the sampling of the diagonal entries was repeated 1000 times. We recorded the fraction of
stable matrices out of these 1000 and interpreted the result as the probability of achieving stability
with the given P and d. The results are in Supplementary Figures 19-30 (first column).

7.3 Handling rank-deficiency

The empirical webs of Table 2 have the striking (and possibly unrealistic) feature that they are often
heavily rank-deficient, containing several rows of entries that are linearly dependent irrespective of
parameterization. This has been pointed out before by Haerter et al. (2016) but otherwise has not
received much attention. To characterize the algebraic degeneracy of the matrices, we employed the
concept of structural rank, which is the maximum possible rank a matrix may attain with its nonzero
entries being completely arbitrary (Reinschke 1988). The structural rank values are reported in
Table 2. The lower this number is compared to the number of species, the more linearly dependent
rows the matrix has. Clearly, some of the webs are not much affected by degeneracy (e.g., Weddell
Sea), while others, such as Kongs Fjorden or Serengeti, are highly degenerate.

Biologically, linearly dependent rows mean that the species corresponding to those rows are
not segregated in their diet. As such, one would expect competitive exclusion to favor the most fit
species, driving all the others extinct. Mathematically, this phenomenon manifests itself via the
simple fact that an S×S matrix of rank k necessarily has S− k eigenvalues equal to zero; the system
is therefore unstable and will remain so until at least S− k species are removed.

Introducing separate diagonal entries to each such linearly dependent species resolves their
algebraic degeneracy. However, as long as even just two species remain linearly dependent, the
matrix cannot be stabilized, regardless of the strength of self-regulation. The difference of the
number of species S and the structural rank RS therefore imposes a theoretical minimum on the
number of species that must be self-regulating for the system to be stable. In some cases, this
theoretical minimum is already very high: for Kongs Fjorden, S−RS = 104, which is 39% of the
species, and for Serengeti, S−RS = 116, or 68% of species.

To see if this potentially artifactual limit plays a role in shaping the fraction of species P that
must self-regulate to ensure stability, we also considered alternative, extended parameterizations of
the food webs such that predators preying on shared resources experience interference competition,
and two prey species sharing predators experience indirect positive effects due to the fact that the
predator must divide its time eating its multiple resources. Such interference terms arise naturally
e.g. in the presence of saturating (type II) functional responses coupling predators and prey.
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Supplementary Figure 19: Probability of stability (white: 0%; blue: 100%) in the Carpinteria Salt Marsh
web (Table 2), as a function of the fraction of self-regulating species P and self-regulation strength q. Rows
represent different parameter value combinations of g (Section 7.1) and f (Section 7.3). Columns: 1) no
indirect effects; 2) indirect negative effects; 3) indirect positive effects; 4) indirect negative and positive
effects (Section 7.3).
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Supplementary Figure 20: As Supplementary Figure 19, but for the Flensburg Fjord web (Table 2). Yellow
lines show the minimum fraction of species P that must self-regulate if the network is to be stable at all
(Section 7.4). The yellow line is absent if no stable webs were found with P < 1.
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Supplementary Figure 21: As Supplementary Figure 19, but for the Kongs Fjorden web (Table 2).
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Supplementary Figure 22: As Supplementary Figure 20, but for the Little Rock Lake web (Table 2).
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Supplementary Figure 23: As Supplementary Figure 19, but for the Lough Hyne web (Table 2).
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Supplementary Figure 24: As Supplementary Figure 20, but for the Otago Harbour web (Table 2).
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Supplementary Figure 25: As Supplementary Figure 19, but for the Punta Banda web (Table 2).
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Supplementary Figure 26: As Supplementary Figure 19, but for the Caribbean Reef web (Table 2).
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Supplementary Figure 27: As Supplementary Figure 19, but for the San Quintin web (Table 2).



Self-regulation and the stability of large ecological networks Page 61

A A + Ac A + Am A + Ac + Am

f=
2

g
=

−
0.55

f=
5

g
=

−
0.55

f=
10

g
=

−
0.55

f=
2

g
=

−
0.75

f=
5

g
=

−
0.75

f=
10

g
=

−
0.75

f=
2

g
=

−
0.95

f=
5

g
=

−
0.95

f=
10

g
=

−
0.95

0.8 0.9 1.00.8 0.9 1.00.8 0.9 1.00.8 0.9 1.0

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

P

q

Supplementary Figure 28: As Supplementary Figure 20, but for the Serengeti web (Table 2).
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Supplementary Figure 29: As Supplementary Figure 19, but for the Sylt Tidal Basin web (Table 2).
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Supplementary Figure 30: As Supplementary Figure 19, but for the Weddell Sea web (Table 2).
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To parameterize interference competition, we assigned negative pairs of entries to species sharing
a common resource. The matrix Ac contains these indirect competition coefficients, with all other
entries being zero. Since we have no way of knowing a priori what the values of these coefficients
would be (they are model- and parameterization-dependent), we sampled them independently and
uniformly from the interval [E(A−)/ f , 0], where A− is the set of negative entries in the original
parameterized empirical matrix A, E(A−) is their expectation, and f is a factor we set to either 2,
5, or 10, controlling the strength of indirect competition relative to the strength of direct negative
effects. The parameter f allows us to explore the sensitivity of the results to the strength of indirect
effects. Indirect positive effects between prey sharing a consumer was parameterized and stored
in the matrix Am analogously, except the positive pairs of entries were drawn from [0, E(A+)/ f ]
where A+ is the set of positive entries in A.

Apart from the original matrix A then, we also performed the analysis of self-regulation, as
described in Section 7.2, on the matrices A+Ac, A+Am, and A+Ac +Am. Our results are robust
to this alteration, however, with no qualitative difference occurring in the results (Supplementary
Figure 19-30, columns 2-4). The rank deficiency of the empirical food webs therefore does not
appear to influence the tendency that the majority of species must be self-regulated for stability.
In fact, there is a slight but visible trend to the contrary, with A+Ac +Am being more difficult to
stabilize than A.

7.4 A lower bound on the number of self-regulating species

So far we have been distributing diagonal entries randomly to estimate the probability of stability.
One could ask a different question however: were we to place the self-regulation terms strategically,
targeting specific species, what is the minimum number of self-regulating species that is theoretically
necessary to achieve stability? Is it possible that in this way many fewer species would need to
exhibit self-regulation?

To test this idea, we took all of our parameterized food webs, and starting with P≈ 1 tried to
find an arrangement of the diagonal entries such that the network was stable. We did this by actually
minimizing the leading eigenvalue via a combination of two stochastic search algorithms (code
available at https://github.com/dysordys/diagonal). First, a hill-climbing algorithm was
used in which, starting out from one diagonal arrangement, we create 1000 mutants by randomly
swapping two diagonal entries, calculate their leading eigenvalues, and choose the one with the
lowest real part. This matrix then becomes the basis for mutations in the next generation of 1000
variants, and so on. Second, we used a genetic algorithm in which 500 individual matrices form a
population, can recombine with one another, and the most “fit” fraction of the population (those
with the lowest real part of the leading eigenvalue) is carried into the next generation.

The run of the algorithm was stopped the moment the leading eigenvalue’s real part was reduced
below zero, i.e., when a stable solution was found. At that point, we reduced P by having one fewer
species self-regulate than before, and repeated the above stochastic search. We did this until one
hundred generations of the hill climber and five subsequent generations of the genetic algorithm
failed to find a stable configuration. The smallest P where a stable configuration was found was
then taken to be the minimum fraction of self-regulating species necessary for stability. Results are
shown, for four of the well-resolved webs, by the yellow lines on Supplementary Figures 20, 22,
24, and 28. For the Ecopath networks, see Supplementary Figure 32. The theoretical minimum is
indeed lower than what we have found by randomly distributing the diagonal entries.

https://github.com/dysordys/diagonal
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However, this effect is not especially dramatic. We still find that even under the most optimistic
estimate, 70-80% of species must exhibit self-regulation for stability in the well-resolved webs. For
the Ecopath webs, the original ratio of P≈ 50% drops to about 25%. Of course, it is not clear why
such an extreme fine-tuned scenario would be realized in nature. One may be tempted to invoke
non-adaptive selection arguments (Proulx et al. 2005, Borrelli et al. 2015) favoring a self-regulation
structure minimizing η(A), but one must bear in mind that self-regulation is only partially a property
of an organism’s physiological traits under evolutionary control. As such, though the idea that the
distribution of self-regulation terms is selected to be highly nonrandom may have merit, further
evidence is needed to make this claim convincing.

7.5 The quality of the analytical approximation for empirical webs

The results we have obtained here for empirical webs are certainly consistent with the theoretical ones
developed in Sections 5 and 6. However, one may still ask how well the analytical approximation
performs on empirical networks—that is, whether one could generate the analogue of Supplementary
Figure 17 using the observed underlying network structures instead of randomly generated ones.

We have, in fact, generated all such plots in detail and compiled them into animations for
each parameterization of all 12 webs, fixing the value of q at 1.5 which leads to self-regulation
strengths of d =−21.5η(A) (altering d does not change the quality of approximation). The analytical
approximation does a very good job of capturing the actual η(A) in every single case. As an example,
we show here, in Supplementary Figure 31, snapshots of the San Quintin web (Hechinger et al. 2011)
parameterized with g =−0.75, f = 5, and with all indirect effects included. The animations for all
parameterizations of each web may be viewed at https://github.com/dysordys/diagonal.

7.6 Analysis of the Ecopath matrices

Applying the same methodology that we used for the 12 well-resolved webs to the seven largest
Ecopath webs found in Jacquet et al. (2016) was considerably eased by the fact that these matrices
were already parameterized. Therefore, the allometric method for parameterization was not needed;
nor were there several alternative parameterizations. The results on the stability of these networks
as a function of the fraction of self-regulating species is seen in Supplementary Figure 32.

The general shape of the results is consistent with our other analyses: one can see that the highest
likelihood of stability happens at intermediate self-regulation strengths, and that a large fraction
of species in the community must self-regulate if the webs are to be stable. However, there is a
big quantitative difference: for the well-resolved webs, it was not possible to have stability before
more than 90% of species were self-regulating, but here this fraction is between 50% and 60%.
Also, when minimizing P via the genetic algorithm (Section 7.4), it turns out that the theoretically
required minimum P for stability is between 20% and 25% of all species, which is much lower than
the previously obtained 70-80%.

We conclude that, while the qualitative properties of the previous results still hold, these matrices
require a considerably lower fraction of self-regulating species for stability. It is not clear yet whether
this is due to structural properties of Ecopath matrices, or their smaller species richness (or both).

7.7 No pattern to the trophic identity of self-regulating species

The received ecological view is that basal species and top predators are much more likely to exhibit
self-regulation than species at intermediate trophic levels: for basal species nutrient and spatial

https://github.com/dysordys/diagonal
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Supplementary Figure 31: Spectra (yellow points) of matrices A = M+D. Here M is the parameterized
version of the San Quintin food web (Hechinger et al. 2011; g =−0.75, f = 5, and with all direct and indirect
effects included), while D is sampled from Eq. 5.14 with d1 = −5η(M), d2 = 0, and different values for
P (panels). The value of η(M) is the spectral abscissa of M, i.e., the matrix without any self-effects; its
numerical value is η(M) ≈ 5.07. The grey dashed line separates the left and right halves of the complex
plane. The red dashed line shows the analytical prediction for η(A), calculated from Eq. 5.25 using the
effective parameters Veff and ρeff (calculated using Eqs. 2.17, 2.18, and 2.19), and with appropriate rescaling
by
√

SVeff. The analytical prediction captures the actual value of η(A) very well in all cases.
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Supplementary Figure 32: As Supplementary Figure 19, but for the seven parameterized Ecopath webs
taken from Jacquet et al. (2016). Each row shows a different web.
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limitation, for top predators territoriality and intraspecific interference will habitually create negative
self-effects. One could ask whether communities can be stabilized by specifically targeting these two
species groups with self-regulation. Another question is whether there is any such trophic pattern to
the minimum fraction of self-regulating species (Section 7.4) found in our webs earlier (yellow lines
in Supplementary Figures 20, 22, 24, 28, and 32). In other words, do the self-regulating species tend
to come preferentially from the basal and top level whenever their fraction is the smallest possible?

Let us start with the well-resolved webs in Table 2. We used four webs out of the twelve
in Table 2: Flensburg Fjord, Little Rock Lake, Otago Harbour, and Serengeti. Self-regulation
was assigned to all basal and top species but no others; otherwise, the same parameterizations
were implemented as before. We then checked how often the resulting webs turned out stable
(Supplementary Figure 33). The short summary of the results is that none of the community matrices
were stable. It is therefore impossible to stabilize these communities by assigning self-regulation
only to basal species and top predators.

Similarly, we checked the trophic distribution of self-regulating species when their fraction was
minimized (Supplementary Figure 34). What we see in every case we looked at is that there is no
trophic pattern to self-regulation. For example, it is not true that basal species or top predators are
more likely to be self-regulating than the other species. In fact, the distribution of self-regulating
species across trophic levels is more or less even.

The Ecopath matrices often did not have unambiguously basal or top species, therefore we did
not ask whether they can be stabilized by assigning self-regulation only to those ones. Instead, we
only checked the trophic distribution of self-regulating species when their fraction was minimized
(Supplementary Figure 35). As in the case of the well-resolved webs, there is no clear trophic
pattern to self-regulation: there is no trophic category that would be more important for the purposes
of network stability than others.

In summary, if empirical ecological networks are to be locally stable, then self-regulation seems
to be equally important across all trophic levels, not just at the bottom and the top. This, of course,
is perfectly compatible with all or most of basal and top species exhibiting self-regulation in nature.
It just means that all others must have substantial self-regulation as well.
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Supplementary Figure 33: Histograms of the spectral abscissas (x-axis) of four food webs, when only
basal and top species are self-regulating. Black dashed lines show the stability boundary where η(A) = 0
in each subpanel. Rows and columns show various parameterizations in the same way as in Supplementary
Figure 19. In each subpanel, the color shows the food web identity (legend on the right), and the histograms
are obtained from the eight different values of self-regulation strength, measured by q. In no cases are the
resulting matrices stable.



Self-regulation and the stability of large ecological networks Page 70

62 92 8 13 22 38 12 18 16 19

26 38 51 63 11 16 45 63 0 1

28 57 28 43 26 40 14 16 12 24

4 6 6 8 5 14 2 6 116 136

62 92 8 13 27 38 13 18 15 19

28 38 46 63 12 16 30 63 0 1

35 57 27 43 29 40 10 16 15 24

4 6 2 8 5 14 6 6 116 136

70 92 10 13 32 38 14 18 15 19

30 38 53 63 13 16 30 63 1 1

40 57 38 43 33 40 11 16 13 24

1 6 3 8 10 14 3 6 118 136

67 92 10 13 34 38 13 18 16 19

32 38 55 63 11 16 44 63 1 1

42 57 36 43 35 40 8 16 16 24

3 6 4 8 8 14 3 6 117 136

A A + Ac A + Ac + Am A + Am

flensburg
littlerock

otago
serengeti

co
ns

um
er

he
rb

ivo
re

om
niv

or
e

pr
im

ar
y p

ro
du

ce
r

to
p 

pr
ed

at
or

co
ns

um
er

he
rb

ivo
re

om
niv

or
e

pr
im

ar
y p

ro
du

ce
r

to
p 

pr
ed

at
or

co
ns

um
er

he
rb

ivo
re

om
niv

or
e

pr
im

ar
y p

ro
du

ce
r

to
p 

pr
ed

at
or

co
ns

um
er

he
rb

ivo
re

om
niv

or
e

pr
im

ar
y p

ro
du

ce
r

to
p 

pr
ed

at
or

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

R
eg

ul
at

in
g/

To
ta

l Class

consumer

herbivore

omnivore

primary producer

top predator

Supplementary Figure 34: Fraction of self-regulating species as a function of trophic level in each of four
food webs (rows) and various parameterizations of indirect effects (columns). We used the matrices in which
the fraction of self-regulating species was minimized (Section 7.4). The numbers on the bars show the number
of self-regulating species and the number of species at that trophic level altogether. The trophic identity of
self-regulating species is by and large evenly distributed across trophic levels.
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Supplementary Figure 35: As Supplementary Figure 34, but for the seven Ecopath matrices (rows).
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8 Diagonal entries generated by nonlinear functional responses typi-
cally do not stabilize large ecological networks

Up to this point, all mechanisms generating negative diagonal entries in the community matrix were
called self-regulation. However, some such contributions may not satisfy our intuition for being
“true” self-regulation. To illustrate this point, consider a very simple population model of the form

dn
dt

= n(b−αn)+ I, (8.1)

where n is the population’s abundance, t is time, b is the intrinsic growth rate, α the intraspecific
competition coefficient, and I an immigration rate from outside sources. Based on the definition of
Section 1.2, self-regulation is present when the per capita growth rate has direct dependence on n.
For this model, an effective per capita growth rate r can be written as

r =
1
n

dn
dt

= b−αn+
I
n
. (8.2)

The corresponding diagonal entry in the community matrix can be expressed via the derivative of
this growth rate with respect to n (Section 1.2):

n∗
∂ r
∂n

∣∣∣∣
n=n∗

= n∗
[
−α− I

n∗2

]
. (8.3)

The first term corresponds to “true” self-regulation: intraspecific crowding directly reducing the per
capita growth rate of the prey. However, the second term stems from immigration and may therefore
be considered, in a sense, artifactual. Opinions of ecologists may be divided on whether to classify
this term as true self-regulation.

An even more confounding example may be constructed by assuming that the above population
is also being consumed by a generalist predator:

dn
dt

= n(b−αn)+ I− an2 p
k2 +n2 , (8.4)

where a and k are parameters of the type III functional response, and p is the predator density. The
per capita growth rate r now reads

r =
1
n

dn
dt

= b−αn+
I
n
− anp

k2 +n2 , (8.5)

with the corresponding self-effect in the community matrix reading

n∗
∂ r
∂n

∣∣∣∣
n=n∗

= n∗
[
−α− I

n∗2
− a(k2−n∗2)p

(k2 +n∗2)2

]
. (8.6)

As long as k2 > n2, the final term contributes to self-regulation (as opposed to self-enhancement).
However, assuming that the type III response arises from switching behavior on the part of the
predator which may have nothing to do with what prey individuals do, one is strongly tempted not
to call this an instance of true self-regulation.

These examples illustrate that some contributions to the diagonal entries of the community
matrix are unambiguously considered self-regulation (for instance, those due to direct intraspecific
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interference or crowding); some, like immigration, are at the very least ambiguous; and some, like
those stemming from nonlinear functional responses, may easily be considered artifactual. The
problem here is that, to our knowledge, there has never been a definitive catalogue of what should
be considered true self-regulation.

Attempting to create such a catalogue here would likely be a pointless exercise in artificial
prescription. Instead, we perform a study of self-regulation such that functional response-generated
negative diagonal entries will not be considered examples of true self-regulation. Note that this
choice is conservative. Indeed, in some cases there is ambiguity in how the self-effects arising
from functional responses should be interpreted. A type III functional response may produce
negative diagonal entries—but whether it counts as true self-regulation depends on the mechanistic
interpretation of the response. If the predator’s reduced kill rate at low prey abundance is not the
result of some switching behavior on the part of the predator, but the result of a prey refuge available
only to a handful of prey items, then there will be competition for those refuges, and so the negative
diagonal entry will at least partially stem from true self-regulation. Since the type III functional
response is a phenomenological construct, there is no way to tell a priori whether the corresponding
diagonal entries are due to true self-regulation. Here however, we will consider all such diagonal
contributions as artifactual. In this way, our choice is conservative, underestimating the actual extent
of true self-regulation in a system.

To be able to disentangle funcional response effects from true self-regulation effects in the
diagonal of the community matrix, one needs an underlying dynamical model from which those
diagonal entries are derived. Here we explore two different models: a simple dynamical model
where equilibrium biomasses follow Damuth’s law (Damuth 1981), and the metabolically scaled
network model of Schneider et al. (2016).

8.1 Dynamical food web model with Damuth’s Law

We used an explicit model of food web dynamics with type II and type III functional responses. In
this model the dynamics of species’ population densities follow the equation

dBi

dt
= biBi +Bi

S

∑
j=1

ei jwi jFi j−
S

∑
j=1

B jw jiFji−diB2
i , (8.7)

where Bi is the density of species i, bi is its baseline per capita growth rate, wi j is the adjacency
matrix of the food web (equal to 1 if species i eats j and to 0 otherwise), ei j is species i’s assimilation
efficiency when eating species j, Fi j is a generalized functional response, and di measures the
strength of direct intraspecific competition—i.e., the strength of true self-regulation. The function
Fi j is given as

Fi j =
ωi jBh

j

Bh
0i +∑

S
l=1 wilωilBh

l

. (8.8)

In this functional response, ωi j is the proportion of i’s maximum consumption rate targeted at
consuming j, B0i is species i’s half-saturation density, and h is an exponent determining the Holling
type of the functional response.

Introducing the simplifying notation

Xi =
1

Bh
0i +∑

S
l=1 wilωilBh

l

, (8.9)
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we have
Fi j = Xiωi jBh

j . (8.10)

The model can now be rewritten as

dBi

dt
= biBi +Bi

S

∑
j=1

Xiei jwi jωi jBh
j −Bh

i

S

∑
j=1

w jiω jiB jX j−diB2
i . (8.11)

Only the product wi jωi j appears in the equation. Calling this product Wi j:

dBi

dt
= biBi +Bi

S

∑
j=1

Xiei jWi jBh
j −Bh

i

S

∑
j=1

B jX jWji−diB2
i . (8.12)

We now calculate the Jacobian Jik of this model. First we determine the derivative of Xi with
respect to Bk:

∂Xi

∂Bk
=

∂

∂Bk

[
1

Bh
0i +∑

S
l=1WilBh

l

]
=−hX2

i

S

∑
l=1

WilBh−1
l δkl =−hX2

i WikBh−1
k , (8.13)

where δkl is the Kronecker symbol (equal to 1 if k = l and to 0 otherwise). The Jacobian then reads

Jik =
∂ (dBi/dt)

∂Bk
= biδik +δik

S

∑
j=1

Xiei jWi jBh
j −hBiX2

i WikBh−1
k

S

∑
j=1

ei jWi jBh
j

+hBiXi

S

∑
j=1

ei jWi jBh−1
j δ jk−hBh−1

i δik

S

∑
j=1

B jX jWji−Bh
i

S

∑
j=1

δ jkX jWji

+hBh
i

S

∑
j=1

B jX2
j WjkBh−1

k Wji−2diBiδik.

(8.14)

Rearranging and performing summations using the Kronecker symbols:

Jik = δik

(
bi +Xi

S

∑
j=1

ei jWi jBh
j −hBh−1

i

S

∑
j=1

B jX jWji−2diBi

)
+hBiXieikWikBh−1

k

−XkWkiBh
i −hBiX2

i

(
S

∑
j=1

ei jWi jBh
j

)
WikBh−1

k +hBh
i Bh−1

k

S

∑
j=1

B jX2
j WjkWji.

(8.15)

For parameterizing the model, we have used those empirical networks in Table 2 for which
body mass data was available: Carpinteria, Kongs Fjorden, Lough Hyne, Punta Banda, Caribbean
Reef, San Quintin, and Weddell Sea1. Species for which body mass information was missing were
discarded from the webs. The adjacency matrix wi j was given empirically; ei j was set to 0.1 for
strict herbivores and to 0.2 for carnivores (i.e., trophic level higher than 2); ωi j was set equal to the
inverse of the total number of prey items for each prey species a predator consumed (equal hunting
effort on each prey species); and h either took the value 1 (type II functional response) or 2 (type III
response).

1Body masses in Weddell Sea greater than 1000kg were double-checked against the cited source (Trites and Pauly
1998) for such values in Jacob (2005) and corrected when necessary.
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Name Species h = 1 h = 2
Carpinteria Salt Marsh 201 0.0033 0.0001
San Quintin 218 0.0022 0.0001
Punta Banda 268 0.0023 0.0006
Kongs Fjorden 252 14.7811 11.6753
Lough Hyne 326 41.7021 0.7892
Caribbean Reef 213 128.5347 0.0143
Weddell Sea 358 617.9564 0.0347

Supplementary Table 3: Empirical webs with body mass data. This is a subset of the webs in Table 2. The
number of species is lower than earlier, because only those species are retained in the network for which body
mass data was available. The column h = 1 shows the minimum strength of direct self-regulation such that,
were all di equal to this value (all species self-regulate to the same extent), the web would be stable, given
that the Holling parameter h is equal to 1 (type II functional response). The column h = 2 is the same except
for h equal to 2 (type III functional response).

In choosing the intrinsic growth rates bi, assigning them either randomly or based on allometric
considerations lead to nonfeasible communities almost invariably (i.e., zero or negative densities
Bi), even when all species were simultaneously self-regulating by having positive di values. We
therefore approached the problem from the other end. First, we pre-determined the equilibrium
densities Bi. They were chosen to be proportional to the −3/4th power of individual body masses to
satisfy Damuth’s Law (Damuth 1981). We then solved for the bi such that the equilibrium solution
to Eq. 8.12 would yield those equilibrium densities: setting dBi/dt = 0, we have, from Eq. 8.12,

bi = diBi−
S

∑
j=1

Xiei jWi jBh
j +Bh−1

i

S

∑
j=1

B jX jWji. (8.16)

In order for the right hand side to be fully specified, the B0i still have to be determined. They were
drawn, for each species, independently and uniformly from the interval [Bi/2, Bi], ensuring that the
half-saturation constants are at least half as large as the equilibrium densities themselves.

We initially set all di = 0. We then determined, for each web and for both values of h = 1
and h = 2, the minimum amount of self-regulation required for stability provided that all species
simultaneously self-regulate (this was simply done by numerical trial-and-error; see Table 3 for
these values). Calling this baseline strength dbase, we did the exact same study as before: setting
the strength of self-regulation to d = dbase× 2q and the fraction of self-regulating species P, we
swept through the values q = 0.5,1.5, . . . ,7.5 for each value of P (i.e., each di was set to d with
probability P and to 0 with probability 1−P), reassigned the diagonal entries’ arrangement 1000
times, and tallied the number of times the community ended up being stable. The code performing
this simulation can be downloaded from https://github.com/dysordys/diagonal; results are
shown below.

What we see is that substantial self-regulation is still required for community stability, both for
h = 1 and h = 2. While far from being perfect, this study does demonstrate that negative diagonal
entries generated by functional responses cannot necessarily stabilize communities. Community
stability requires that the vast majority of species experience self-regulation whose source is not
simply in the trophic coupling of the system.

https://github.com/dysordys/diagonal


Self-regulation and the stability of large ecological networks Page 76

Weddell Sea
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Supplementary Figure 36: As Supplementary Figure 19, except the panels refer to various webs that have
been parameterized using Eq. 8.12. All functional responses are type II (h = 1). We see that almost all species
must explicitly self-regulate if the communities are to be stable.



Self-regulation and the stability of large ecological networks Page 77
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Supplementary Figure 37: As Supplementary Figure 36, except all functional responses are type III
(h = 2). We see that almost all species must explicitly self-regulate if the communities are to be stable. The
Caribbean Reef web is somewhat of an outlier, but even here, more than 80% of species must exhibit direct
self-regulation.
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8.2 The allometric model of Schneider et al. (2016)

Somewhat different conclusions emerge from the allometric food web model of Schneider et al.
(2016). In this model, basal species are first generated, which achieve population growth by
consuming a number of abiotic nutrients. Their body masses are drawn from either a lognormal
or a uniform distribution. Then, a number of consumer species are generated, their body masses
determined in the same way. A consumer species eats any other species (basal or itself a consumer)
at an efficiency determined by an energetic optimum curve: feeding is maximal on species whose
body mass is energetically optimal compared to the consumer’s body mass, with the efficiency of
consumption declining for both smaller and larger prey. After having determined the link strengths
between species this way, population dynamics proceeds via a set of dynamical equations (Eqs. 1-8
in Schneider et al. 2016).

We have followed the model and parameterization of Schneider et al. (2016) exactly, by compil-
ing and running the source code pdef_dynamics_2.4.c implementing their model (code found at
https://github.com/fdschneider/schneider_et_al_2016_animaldiversity). We have
changed only four things. First, we have used ten abiotic nutrients instead of just two—this gives
more opportunities to basal species to segregate in resource use and therefore coexist. Second, we
have chosen the number of basal and consumer species to conform to the numbers observed in the
Weddell Sea food web in Table 3 (149 basal and 209 consumer species). We have attempted to
use the actual body mass data for the species in Weddell Sea as well, but this resulted in the code
failing (it could not produce an acceptable adjacency matrix). We therefore simply used the same
random biomass generation method that was already implemented in the code. Third, we set the
Hill exponents in the functional responses either all to 1 (type II response) or 2 (type III response).
Fourth, the predator interference parameters were all set to zero at first, since these would introduce
direct self-regulation, but we are interested only in the effects of nonlinear functional responses.
Later we reintroduced these parameters for comparison, exactly as they were in the original code.

Looking at the fraction of species surviving by the end of the simulation in 100 replicate runs
with interference parameters set to zero (Supplementary Figure 38), we see that type II responses are
unable to stabilize the communities. However, for type III responses, typically more than half the
species are retained, and more importantly, there are some outlying cases where almost all species
persist. It would not be appropriate to expect the model to lead to the persistence of all species
simultaneously. After all, some of the empirically observed species may not actually be stably
persisting in the system either. The fact that the model sometimes leads to the persistence of almost
all species already demonstrates that nonlinear functional responses alone are capable of stabilizing
large networks—even if such an outcome is not the most typical one.

For comparison, we performed the same simulations but with the predator interference pa-
rameters intact (Supplementary Figure 39). Qualitatively, we find the same result as before, but
quantitatively a higher fraction of the simulations lead to almost all of the species persisting under
type III functional responses. Predator interference may justly be considered a source of direct
self-regulation, and this has lead to a higher fraction of species persisting, as expected.

In summary, while the first model in Section 8.1 is one in which the networks can only be
stabilized if almost all species exhibit explicit self-regulation, in the second model nonlinear
functional responses alone are capable of stabilizing. Such an outcome is not the most typical one,
but still is a possibility. This supports the weak assertion that nonlinear responses alone may be
insufficient to stabilize large networks (it may be debated just how typical such an outcome is), but
disproves the strong assertion that they could never do so.

https://github.com/fdschneider/schneider_et_al_2016_animaldiversity
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Supplementary Figure 38: Box plots summarizing simulation results for the fraction of species persisting
in the model of Schneider et al. (2016). Each box plot summarizes 100 runs. The two panels show results
depending on whether species’ body masses were drawn from a lognormal (left panel) or a uniform (right
panel) distribution. Yellow boxes show results with type II, blue boxes with type III functional responses.
In each panel, results are broken down as follows: P refers to the total fraction of surviving species; P_b is
the fraction of surviving basal species; and P_c is the fraction of surviving consumers (all species except the
basal ones). For type III responses, the mean total fraction of persisting species is either 67% (lognormally
distributed body masses) or 46% (uniformly distributed body masses). Box plot guide: median (lines), 25% to
75% quartiles (boxes), ranges (whiskers), outliers (points; defined as falling outside 1.5 times the interquartile
range of the box).
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Supplementary Figure 39: As Supplementary Figure 38, but with nonzero interference parameters. The
qualitative result is the same as before, but the mean fraction of persisting species with type III functional
responses has increased to 77% (lognormally distributed body masses) and 63% (uniform body masses).
Also, there is a higher fraction of cases with almost all species persisting than before.
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